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 A B S T R A C T

The denoising of hyperspectral image (HSI) plays a crucial role in the subsequent interpretation and 
application. The rise of artificial intelligence technology has brought new opportunities for hyperspectral 
image denoising, and its potential and advantages in this field are gradually changing the traditional 
denoising pattern. This paper proposes a jointly spatial and spectral difference constraints with low-rank 
tensor factorization. Firstly, the spatial and spectral difference is combined in the framework of low-rank 
tensor factorization, to fully mine global spatial–spectral information and improve the removal ability of 
complex distribution noise. Secondly, based on the premise of effectively preserving HSI intrinsic three-
dimensional structure, the spatial horizontal and vertical difference constraints are used to mine the local 
smoothness and similarity of spatial. Thirdly, the full-band spectral difference constraint could not only 
characterize the continuity and sparsity of the whole spectral domain, but also effectively characterize the 
noise distribution with linear structure. Finally, experiments on simulated and real HSIs show that the proposed 
method outperforms state-of-the-art methods in removing mixed noise performance.
1. Introduction

Hyperspectral images (HSIs) are obtained through hyperspectral 
sensors, which capture various electromagnetic wave signals from the 
ultraviolet, visible, to infrared bands. These spectrums are continuous 
and typically have narrow spectral intervals (Dian et al., 2020; Wang 
et al., 2024). The HSI captures a wealth of spatial and spectral infor-
mation regarding the observed objects. By means of the continuous 
spectral curves, HSI could effectively differentiate the physical char-
acteristics of various surface materials, making it widely applicable 
in numerous fields, including classification (Yu et al., 2022a, 2024; 
Ahmad et al., 2024), change detection (jie Zhang and wei Liu, 2024), 
and others (Zhang et al., 2021c; Yu et al., 2022b; Xiao et al., 2022; 
Zheng et al., 2021).

However, due to the sensitivity of sensors, imaging mechanisms, 
circuit signal responses, and atmospheric interference, almost all the 
acquired HSIs are inherently subject to contamination from different 
types of noise, including Gaussian, stripe, deadline, mixed noise. If we 
discard the noisy HSIs, it would result in a serious loss of valuable 
data (Zhang et al., 2021b; Gao et al., 2022). However, if we ignore 
the issue of noise contamination and directly utilize the noisy HSI in 
subsequent applications, it is likely to bring about a detrimental impact 
for interpretation (Zhang et al., 2018, 2020b; Xiao et al., 2023b; Yu 
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et al., 2023). For instance, numerous studies have demonstrated that 
noise contamination significantly diminishes the classification accuracy 
of HSI (Zhang et al., 2023b; Xu et al., 2024; Chen et al., 2018a). There-
fore, denoising is a crucial pre-processing procedure to improve the 
quality of hyperspectral images. Generally, hardware-based approaches 
usually struggle to remove mixed noise from HSI (Kerekes and Baum, 
2003; Xiao et al., 2023a). On the contrary, software algorithms offer a 
viable alternative for noise removal in HSI (Zhang et al., 2023a, 2019, 
2020c, 2022b).

So far, a mass of HSI denoising methods have been developed. 
These methods could be divided into three types: model-driven (Su 
et al., 2023; Chen et al., 2018b; Fu et al., 2023; Li et al., 2023), data-
driven (Miao et al., 2022; Wang et al., 2022) and model-data-driven 
methods (Xiong et al., 2022b; Zhang et al., 2021a).

Model-driven methods are designed to use mathematical mod-
els (Fernandes et al., 2020; Wu et al., 2024; He et al., 2024; Ma et al., 
2020; Wang et al., 2018; Huang et al., 2024; Zhang et al., 2020a; Pan 
et al., 2024) and prior knowledge for modeling and processing HSI. For 
instance, to fully exploit the spatial structural information in HSI, He 
et al. (2015) developed an approach that combines total variation regu-
larization with low rank matrix representation. This approach considers 
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both the smoothness of the image and the global structure. Peng et al. 
(2022a) proposed a regularizer called Representative Coefficient Total 
Variation, which could capture both low-rankness and smoothness, 
thereby achieving fast removal of noise. To excavate the spectrum low-
rank property of HSI, He et al. (2019) utilized the Tucker-3 tensor 
decomposition method for HSI denoising. However, mining information 
from a single dimension cannot achieve high-quality denoising effects. 
Therefore, it is crucial to consider spatial–spectral dimensions of the 
information on denoising task. To address this issue, Peng et al. (2020) 
introduced an enhanced 3D total variation model. By applying 3-D total 
variation regularization, this method captures the sparse characteristic 
of HSI. In addition, Zhang et al. (2022a) developed an approach based 
on hybrid space-spectrum total variation (SSTV) regularization, which 
is called 𝓁0 - 𝓁1−2 SSTV. Specifically, it can be regarded as an ensemble 
regularization of the spatial–spectral gradient model into the SSTV. 
Jiang et al. (2022) developed a new hybrid noise removal method for 
HSIs. It takes into account the inherent low-rank and self-similarity of 
HSI. Subsequently, Sun et al. (2023a) constructed a hybrid prior model 
of global tensor low-rank and non-local group sparsity. Zhuang and 
Ng (2023) proposed an efficient and parameter-free hybrid denoising 
approach for HSI that utilizes a Gaussian mixture model to depict the 
intricate distribution of noise.

Data-driven methods have experienced a rapid development in 
recent years. These approaches are designed to discover the non-
linear correlation between noisy and clean HSIs. For instance, Pan 
et al. (2022) developed an end-to-end model based on encoder–decoder 
architecture and quasi attention mechanism. This model effectively ex-
tracts both spatial and spectral information from HSI. Wei et al. (2020) 
introduced a 3D quasi-recurrent neural network, which combines three-
dimensional CNN and recursive neural networks. This method explores 
the spectral global low-rank and spatial self-similarity to removal noise 
in HSI. Wang et al. (2023a) proposed an LL1 decomposition based 
on nonlinear learnable transformation (NT-LL1) to characterize the 
low-rank structure of HSI. Luo et al. (2021) constructed an unsuper-
vised spatial–spectral deep image prior (S2DIP), which utilizes the 
spatial–spectral features to facilitate HSI restoration.

In HSI denoising field, model-data-driven algorithms are gradually 
becoming the hot topic. For example, Zhang et al. (2020c) introduced 
a Deep Spatio-Spectral Bayesian Posterior model. This model executes 
noise assessment within a Bayesian structure, and it fuses three convo-
lutional sub-networks with this Bayesian structure to learn the trainable 
parameters. Zhang et al. (2021a) introduced a low-rank spatio-spectral 
network for HSI mixing noise removal. The network embeds the low-
rank prior into the convolutional framework. Xiong et al. (2022a) 
proposed the subspace based multi-dimensional sparse network aimed 
to remove HSI noise. This approach embeds low-rank and sparsity into 
convolutional network.

On one hand, model-driven methods still face challenges when 
dealing with the HSI mixing noise. For the complexity of mixing noise, 
it is difficult to establish accurate model to describe and separate 
the noise components. These methods not only require modeling the 
characteristics of different types of noise, but also involve a large 
amount of time and effort for tuning the model parameters.

On the other hand, data-driven methods aim to fit the noise distri-
bution by training labels and samples, and perform noise removal on 
this basis. However, when the noise in HSI exhibits a complex and high-
intensive distribution, most data-driven methods are hard to accurately 
model such mixed noise distribution. This issue may lead to overfitting 
issues, resulting in poor denoising performance.

Furthermore, model-data-driven approaches sidestep the issues of 
laborious parameter tuning and scarcity of training data. Nevertheless, 
its capacity to generalize is not reliable across various noisy HSIs.

To solve aforementioned problems, this paper proposes a novel 
method named jointly spatial and spectral difference constraint with 
low-rank tensor factorization (JSSDC-LRTF), to remove HSI mixed 
noise. The innovations of this method are listed as follows.
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• This paper combines spatial difference and spectral difference 
regularization constraint within the framework of low-rank ten-
sor factorization. The three-dimensional spatial–spectral informa-
tion is fully utilized to improve the ability to remove complex 
distribution noise.

• Building upon the preservation of the inherent three-dimensional 
structural information in HSI, spatial difference constraint on 
the horizontal and vertical dimensions are used to mine local 
smoothness and similarity of spatial information. The full-band 
spectral difference constraint could not only retain the original 
spectral information well and better characterize the continuity, 
sparsity and global correlation of the spectrum, but also bet-
ter characterize the noise distribution with linear structure by 
calculating the difference between adjacent bands.

• In simulated and real datasets experiments, the proposed method 
could show more excellent recovery effects over the SOTA meth-
ods in removing mixed noise, particularly for high intensity and 
dense mixed noise.

The remaining part of this paper is organized as follows. Section 2 
presents the notations and preliminaries. Section 3 introduces the 
proposed model. Section 4 provides relevant simulated and real exper-
iments, as well as an analysis of the sensitivity of model parameters. 
Finally, Section 5 concludes the paper, providing a summary of the 
work.

2. Related work

In this paper, we use lowercase Times New Roman letters to repre-
sent scalars, uppercase boldface Times New Roman letters to represent 
vectors and matrixes, and Euclidean mathematical font to represent 
tensors. For an N-order tensor  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁  and matrix 𝐗 ∈
R𝐽𝑛×𝐼𝑛 ,tne mode-𝑛 tensor-matrix product is represented as  = ×𝑛𝐀, 
where  ∈ R𝐼1×⋯×𝐼𝑛−1×𝐽𝑛×𝐼𝑛+1×⋯×𝐼𝑁 . The inner product of two matrices 
of the same dimension is represented as ⟨𝐗,𝐘⟩ = ∑

𝑖,𝑗 𝑥𝑖,𝑗 ⋅ 𝑦𝑖,𝑗 . Mode-𝑛
unfolding matrix of tensor  is denoted as 𝐗(𝑛) = unfold𝑛() ∈
R𝐼𝑛×(𝐼1 ,…,𝐼n - 1 ,𝐼n+1 ,…,𝐼𝑁 ), and fold𝑛(𝐗(𝑛)) =  , where fold𝑛 is the inverse 
of unfold operator. Frobenius and 𝓁1 norms are represented as ‖𝐗‖F =
(⟨𝐗,𝐗⟩)1∕2 and ‖𝐗‖1 =

∑

𝑖,𝑗
|

|

|

𝑥𝑖,𝑗
|

|

|

, respectively.
HSI can be regarded as three-order tensor  ∈ R𝑀×𝑁×𝑃 . It can 

also be represented as a dimensionality reduction matrix 𝐗 ∈ R𝑀𝑁×𝑃 . 
This matrix exhibits a strong low-rank property, where the rank 𝑟 is 
significantly smaller than the dimensionality 𝑃  of the matrix. And the 
columns of this matrix constitute the vectorized spectral bands of the 
HSI.

2.1. Tucker decomposition

Low-rank tensor decomposition can effectively extract and utilize 
redundant information, so as to achieve effective noise removal. In 
addition, as a three-dimensional data cube, the hyperspectral image 
contains rich spatial and spectral information, and the tensor decom-
position method can naturally deal with this multi-dimensional data 
structure and retain the global structure and intrinsic correlation of 
the image. A tucker decomposition of a third-order tensor form is as 
follows (Sun and He, 2021): 

 ≈  ×1 𝐀 ×2 𝐁 ×3 𝐂 =
𝑃
∑

𝑝=1

𝑄
∑

𝑞=1

𝑅
∑

𝑟=1
𝑔𝑝𝑞𝑟𝐚𝑝◦𝐛𝑞◦𝐜𝑟 = [[;𝐀,𝐁,𝐂]]. (1)

where 𝐀 ∈ R𝑖×𝑃 ,𝐁 ∈ R𝑗×𝑄,𝐂 ∈ R𝑘×𝑅 are the factor matrixes obtained 
from the Tucker decomposition.  ∈ R𝑃×𝑄×𝑅 represents the core 
tensor. ◦ represents the product between the elements of the matrix, 
also known as the Hadamard product. Different tucker decomposition 
modes reflect different levels of interaction between factor matrixes. 
And its Tucker-3 decomposition form is  ≈ ×3𝐀.  is the spatial 
reduced image, 𝐀 represents the spectral subspace matrix.
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2.2. Total variation regularization

The Total Variation regularization was originally developed by 
Rudin et al. (1992), due to its ability to effectively preserve edge in-
formation and enhance smoothness. TV regularization has been widely 
used in image denoising problems (Beck and Teboulle, 2009). For a 2D 
image 𝐗 of size 𝑀 ×𝑁 , the anisotropic TV norm is represented below: 

‖𝑥‖𝑇𝑉 =
𝑀−1
∑

𝑖=1

𝑁−1
∑

𝑗=1

{

|

|

|

𝑥𝑖,𝑗 − 𝑥𝑖+1,𝑗
|

|

|

+ |

|

|

𝑥𝑖,𝑗 − 𝑥𝑖,𝑗+1
|

|

|

}

+
𝑀−1
∑

𝑖=1

|

|

𝑥𝑖,𝑁 − 𝑥𝑖+1,𝑁 |

|

+
𝑁−1
∑

𝑗=1

|

|

|

𝑥𝑀,𝑗 − 𝑥𝑀,𝑗+1
|

|

|

(2)

It can be written as: 
‖𝐗‖𝑇𝑉 = ‖

‖

ℎ𝐗‖‖1 + ‖

‖

𝑣𝐗‖‖1 (3)

where ℎ and 𝑣 are the first-order difference operators in the hori-
zontal and vertical dimensions.

Each band of HSI can be seen as a gray image. Therefore, we can 
individually apply the TV norm to each band of the HSI. Afterward, 
the norms of each band are summed up. The TV norm for each band is 
defined below (Yao et al., 2019): 

‖𝐗‖𝐻𝑇𝑉 =
𝑝
∑

𝑗=1

‖

‖

‖

𝐗𝑗
‖

‖

‖𝑇𝑉
(4)

where 𝐗𝑗 represents the vector of the HSI 𝑗th band.  ∶ R𝑀𝑁 → R𝑀×𝑁

denotes the operator that reconstructs the 𝑗th band vector into the 
𝑀 ×𝑁 image.

2.3. Gradient tensor

The gradient tensor of  ∈ R𝑛1×𝑛2×⋯×𝑛𝑑  with respect to mode-𝑘 is 
defined as in Wang et al. (2023b): 
𝑘 = ∇𝑘() =  × 𝑘𝐃𝑛𝑘 , 𝑘 = 1, 2,… , 𝑑 (5)

where 𝐃𝑛𝑘  is a row-circulant matrix.

3. Methodology

The observed HSI  ∈ R𝑀×𝑁×𝑃  is typically contaminated by mixed 
noise. The spatial dimension is denoted as 𝑀 ×𝑁 , and the spectral di-
mension is denoted as 𝑃 . The mixed noise includes Gaussian, deadline, 
stripe noise. HSI contaminated by mixed noise can be approximated as 
an additive degradation process: 
 =  + +  (6)

where  ∈ R𝑀×𝑁×𝑃  represents the clean HSI.  ∈ R𝑀×𝑁×𝑃  represents 
random noise, such as Gaussian and Poisson.  ∈ R𝑀×𝑁×𝑃  represents 
sparse noise, for example stripe and deadline. The objective of HSI 
denoising is to reconstruct the noise-free HSI  from the noisy HSI  .

In accordance with linear spectral mixing model, every spectral 
signature within HSI could be depicted as a linear aggregate of a few 
endmember spectra (Yao et al., 2019). However, due to the pronounced 
correlations among the spectral bands within HSI, low-rank matrix 
decomposition model is employed to depict HSI as 𝐗 = 𝐔𝐕T. Here, 
𝐔 ∈ R𝑀𝑁×𝑟 (𝑟 ≪ 𝑃 ) represents the abundance map. 𝐕 ∈ R𝑃×𝑟 denotes 
the endmember matrix. Thus, the degradation model can be expressed 
as: 
𝐘 = 𝐔𝐕T + 𝐍 + 𝐒 (7)

where 𝐘, 𝐍, and 𝐒 are matrixes after the dimensionality reduction of 
 ,  , and  in Eq. (6), respectively.

We apply the TV constraint to each slice of the tensor  ∈ R𝑀×𝑁×𝑃 , 
thereby constructing a jointly spatial and spectral difference regulariza-
tion constraint. This procedure can be divided into two steps: the initial 
3 
step involves spatial difference regularization, while the subsequent 
step involves spectral difference regularization.

For a third-order tensor  ∈ R𝑀×𝑁×𝑃 , we define the jointly spatial 
and spectral difference constraint with low-rank tensor factorization 
regularization constraint as follows: 

‖‖JSSDC-LRTF =
𝑀
∑

𝑖=1

𝑁
∑

𝑗=1
‖(𝑖, 𝑗, ∶)‖𝑇𝑉 +

𝑃
∑

𝑘=1
‖ (:, :, 𝑘)‖𝑇𝑉 (8)

where  = ×3𝐕, and 𝐕 ∈ R𝑃×𝑟 is an endmember matrix. The tensor 
 ∈ R𝑀×𝑁×𝑟 can be dimensionally reduced to the matrix 𝐔 ∈ R𝑀𝑁×𝑟. 
To simplify the notation, this paper defines the spatial and spectral 
difference as follows: 
∇1(𝐔) = [ℎ (∶, ∶, 1),… ,ℎ (∶, ∶, 𝑟)],

∇2(𝐔) = [𝑣 (∶, ∶, 1),… ,𝑣 (∶, ∶, 𝑟)],

∇3() = [𝐵(1, 1, ∶),… ,𝐵(𝑀,𝑁, ∶)]

(9)

where ∇1(𝐔), ∇2(𝐔) and ∇3() represent the spatial horizontal differ-
ence, the spatial vertical difference and the spectral difference, respec-
tively. Thus, we can express the JSSDC-LRTF regularization below:
‖‖JSSDC-LRTF = ‖

‖

∇1(𝐔)‖‖1 + ‖

‖

∇2(𝐔)‖‖1 + ‖

‖

∇3()‖
‖1 (10)

3.1. Model proposal

In this section, we develop an approach to remove HSI mixing noise. 
The flowchart is illustrated in Fig.  1 and can be divided into four steps:

(a) Tensor decomposition: The HSI is decomposed into coefficient 
image  and endmember matrix 𝐁 via the Tucker mode-3 tensor 
decomposition, as depicted in Eq.  (1).

(b) Spatial difference: The coefficient image  undergoes spatial 
difference operation, to obtain two-dimensional spatial difference im-
ages for each band in . These difference results are then stacked and 
reconstructed to obtain the spatial difference image ′, as shown in Eq. 
(3).

(c) Spectral difference: The spatial difference image ′ is multiplied 
with the endmember matrix 𝐁 using the Tucker mode-3 tensor-matrix 
product, resulting in the image ′×3𝐁. Subsequently, spectral differ-
ence operation is applied to obtain the spectral difference tensor, as 
depicted in Eq.  (9).

(d) Iterative optimization: The spectral difference tensor is subjected 
to a fast Fourier transform (FFT), resulting in the reconstructed HSI. 
Subsequently, an iterative optimization process is performed using 
alternating direction method of multipliers approaches to refine final 
restored HSI.

In real HSIs, the distribution and types of noise are usually complex. 
Different types of noise may interact with each other. Here, we utilize 
the 𝓁1-norm to describe the sparse noise component and the 𝓁2-norm to 
describe the Gaussian noise component. Based on the definition (10), 
we developed a denoising approach base on JSSDC-LRTF regularization 
as below: 

min
𝐀,𝐁, , ,

2
∑

𝑖=1
𝜏𝑖‖‖∇𝑖(𝐀)‖‖1 + 𝜏3‖‖∇3()‖

‖1 + 𝛽 ‖
‖

‖

‖

2
𝐹 + 𝜆‖‖1

𝑠.𝑡.  =  + +  , =  × 3𝐁, 𝐈 = 𝐁𝑇𝐁

(11)

where the dimensionality reduction matrix 𝐀 corresponds to 𝐔 as 
defined in Eq.  (7). 𝐁 corresponds to 𝐕, where 𝐕 is an endmember 
matrix. Here, it is orthogonal. 𝜏1,2,3, 𝛽, 𝜆 are the tuning parameters 
employed to regulate the weights of different terms.

3.2. Model optimization

We introduce auxiliary variables 𝐆1,𝐆2,3 and rewrite (11) as 
follows: 

argmin
2
∑

𝜏𝑖‖‖𝐆𝑖
‖

‖1 + 𝜏3‖‖3‖‖1 + 𝛽 ‖
‖

‖

‖

2
𝐹 + 𝜆‖‖1 (12)
𝐀,𝐁, , , 𝑖=1
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Fig. 1. Flowchart of the proposed method. The method can be divided into four steps: (a) Tensor decomposition; (b) Spatial difference; (c) Spectral difference; and (d) Iterative 
optimization.
where ∇𝑖(𝐀) is equal to 𝐆𝑖, and ∇3() is equal to 3 in (11).
Next, we utilize the ADMM algorithm to find the optimal solution 

for Eq.  (12). The augmented Lagrange function for Eq.  (12) is given 
below: 

(

𝐀,𝐁, , , , {𝐆}2𝑖=1,3, {Γ𝑖}4𝑖=1
)

∶=
2
∑

𝑖=1
𝜏𝑖‖‖𝐆𝑖

‖

‖1 +
𝜇
2

2
∑

𝑖=1

‖

‖

‖

∇𝑖(𝐀) −𝐆𝑖 +
Γ𝑖
𝜇
‖

‖

‖

2

𝐹

+ 𝜏3‖‖3‖‖1 +
𝜇
2
‖

‖

‖

∇3() − 3 +
Γ3
𝜇
‖

‖

‖

2

𝐹
+ 𝛽 ‖

‖

‖

‖

2
𝐹

+ 𝜆‖‖1 +
𝜇
2
‖

‖

‖

 −  − −  + Γ4
𝜇
‖

‖

‖

2

𝐹

(13)

where 𝜇 is the penalty parameter. 𝛤𝑖 are the Lagrange multipliers. Sub-
sequently, we must solve the local optimal solution of the subvariate.
Updating 𝐆𝑖: 

argmin
𝐆𝑖

𝜏𝑖‖‖𝐆𝑖
‖

‖1 +
𝜇
2
‖

‖

‖

‖

∇𝑖(𝐀) −𝐆𝑖 +
Γ𝑖
𝜇
‖

‖

‖

‖

2

𝐹
(14)

It is obtained by using the soft threshold operator : 

𝐆𝑖 = 𝜏𝑖∕𝜇
(

∇𝑖(𝐀) + Γ𝑖∕𝜇
)

(15)

Updating 3: 

argmin
3

𝜏3‖‖3‖‖1 +
𝜇
2
‖

‖

‖

‖

∇3() − 3 +
Γ3
𝜇

‖

‖

‖

‖

2

𝐹
(16)

By employing the third-order tensor singular value thresholding 
(t-SVT) (Qin et al., 2022), it is calculated as: 
3 = t-SVT𝜏3∕𝜇

(

∇3 () + 𝛤3∕𝜇
)

(17)

Updating endmember matrix 𝐁: 

argmax
𝐁

⟨

(

𝐘 − 𝐍 − 𝐒 + Γ4∕𝜇
)T𝐀,𝐁

⟩

(18)

Using Singular Value Decomposition (SVD), we can solve Eq. (18) 
as follows: 
{

[𝐇, 𝐉,𝐊] = 𝑆𝑉 𝐷
(

(

𝐘 − 𝐍 − 𝐒 + Γ4∕𝜇
)T𝐀

)

𝐁 = 𝐉𝐊T
(19)

Updating coefficient image 𝐀: 
(

𝜇𝐈 + 𝜇
2
∑

𝑖=1
∇T𝑖 ∇𝑖

)

(𝐀) = 𝜇
(

𝐘 − 𝐍 − 𝐒 + Γ4∕𝜇
)

𝐕 +
2
∑

𝑖=1
∇T𝑖

(

𝜇𝐆𝑖 − Γ4
)

(20)

It can be solved via FFT. Specifically, by performing a Fourier 
transform and applying the convolution theorem, we can derive the 
4 
closed-form solution for 𝐀 as (Krishnan and Fergus, 2009): 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐇 =
2
∑

𝑖=1

(

𝐃𝑖
)∗ ⊙ 

( fold (𝜇𝐆𝑖
)

− Γ𝑖
)

𝐓𝑥 = |

|

|


(

𝐃1
)

|

|

|

2
+ |

|

 (𝐃2)||
2

𝐀 = −1
( 

( fold (𝜇(𝐘−𝐍−𝐒)+Γ3
))

+𝐇
𝜇𝟏+𝜇𝐓𝑥

)

(21)

where |⋅|2 represents the element-wise square operator. ⊙ stands for the 
product of each element. 1 denotes matrix with all elements 1.

Updating recovered image  : 
(

𝐈 + ∇T3∇3
)

() =
(

 − −  + Γ4∕𝜇
)

+ ∇T3
(

3 − Γ4
)

(22)

According to the convolution theorem of the Fourier transform, the 
optimal solution of (22) is obtained as: 

⎧

⎪

⎨

⎪

⎩

 =  (3)∗ ⊙  (3 − 𝛤4)

 = −1

(


(

 − −  + 𝛤4∕𝜇
)

+
𝟏 + 3

∗ ⊙ 3

)

(23)

Updating Gaussian noise  : 

 = (𝜇( −  − ) + 𝛤4)∕(𝜇 + 2𝛽) (24)

Updating Gaussian noise : 

 = 𝑆𝜆∕𝜇( − −  + 𝛤4∕𝜇) (25)

Updating Lagrange multipliers 𝛤𝑖: 

⎧

⎪

⎨

⎪

⎩

𝛤1,2 = 𝛤1,2 + 𝜇∇1,2𝐀 −𝐆1,2
𝛤3 = 𝛤3 + 𝜇∇3 − 3
𝛤4 = 𝛤4 + 𝜇 −  − − 

(26)

Based on above discussions, the optimized workflow is summarized 
in Algorithm 1. And the overall computational cost of the proposed 
algorithm is: 𝑂((𝑃 + 𝑟)𝑀𝑁 log(𝑀𝑁) +𝑀𝑁𝑃 + 𝑟2𝑃 ).
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 Algorithm 1 JSSDC-LRTF Solver  
 Input: HSI data  ∈ R𝑀×𝑁×𝑃 , hyper-parameter 𝜏 = 0.8, 𝜆 = 2, 𝛽 =
80 and rank 𝑟 = 4.

 

 Initialization: Initialize 𝜇 = le−4, 𝜀 = le−6. 𝑆𝑉 𝐷(𝐘) = [𝐔,𝐎,𝐁], 
𝐀 = 𝐔𝑟𝐎𝑟, 𝐁 = 𝐁𝑟.

 

  𝐔𝑟,𝐎𝑟,𝐁𝑟 are the first 𝑟 vectors of 𝐔,𝐎,𝐁.  
 1: while not converge do  
 2: Update variables  
  𝐆1,2,3,𝐀,𝐁, , ,. by Eqs. (15), (17), (19), (21), (23), (24), 
(25).

 

 3: Update 𝛤1,2,3,4 by Eq.  (26).  
 4: Check the convergence conditions  
  ‖

‖

 −  − − ‖
‖

2
𝐹 ∕ ‖‖

2
𝐹 ≤ 𝜀  

  ‖

‖

∇𝑖𝐀 −𝐆𝑖
‖

‖

2
𝐹 ∕ ‖𝐘‖2𝐹 ≤ 𝜀, 𝑖 = 1, 2  

  ‖

‖

∇3 − 3‖‖
2
𝐹 ∕ ‖‖

2
𝐹 ≤ 𝜀  

 5: end while  
 Output: Reconstructed HSI  .  

In hyperspectral image denoising, the convergence condition is 
often used to measure the stability and effectiveness of the algorithm. 
The first convergence condition ‖

‖

 −  − − ‖
‖

2
𝐹 ∕‖‖

2
𝐹 ≤ 𝜀 is used 

to ensure that the difference between the denoised image and the clean 
image is within an acceptable range.

The second convergence condition ‖
‖

∇𝑖𝐀 −𝐆𝑖
‖

‖

2
𝐹 ∕‖𝐘‖

2
𝐹 ≤ 𝜀, 𝑖 = 1, 2

is used to ensure that the difference between the spatial gradient infor-
mation in the denoising process and the spatial gradient information of 
the clean image is within an acceptable range.

The third convergence condition ‖
‖

∇3 − 3‖‖
2
𝐹 ∕‖‖

2
𝐹 ≤ 𝜀 is used to 

ensure that the difference between the spectral gradient information in 
the denoising process and the spectral gradient information of the clean 
image is within the acceptable range. Ideally, the numerator of the 
three constraints is equal to 0, and the denominator uses the original 
image to normalize the difference and reduce the difference before and 
after denoising. However, since it is not possible to completely remove 
the noise, we set the convergence value to a reasonably small value 
close to 0 (in this case, it is set to). If the setting is too small, it is easy 
to overfit. And if the setting is too large, it will cause underfitting with 
insufficient noise removal.

4. Experiments and results

To prove the effectiveness of the developed approach, we conduct 
simulation and real HSI denoising experiments in this section.

For comparative methods, we select eight HSI denoising methods. 
These methods could be categorized into four groups. Specifically, for 
low-rank prior based methods, we chose STCR (Sun et al., 2023b). 
For coefficient matrix-based methods using nonlocal similarity prior 
modeling, we select NGMeet (He et al., 2019). For models founded 
on combine low-rank and local smoothness, we use stable denoising 
methods such as LRTV (He et al., 2015), CTV-RPCA (Peng et al., 2022b) 
and RCTV (Peng et al., 2022a). For data-driven methods, we employ 
HSID (Yuan et al., 2019), MAN (Lai and Fu, 2023) and QRNN3D (Wei 
et al., 2020). Regarding the parameter settings of these comparative 
methods, we fine-tune them based on the default setting to ensure the 
optimal performance.

In terms of evaluation metrics for the simulation experiments, we 
select three quantitative indices: Mean Peak Signal-to-Noise Ratio (MP-
SNR), Mean Structural Similarity (MSSIM), and Error Relative Global 
Accuracy Synthesis (ERGAS). MPSNR and MSSIM represent the average 
values of PSNR and SSIM, respectively, calculated for each spectral 
band. PSNR and SSIM are spatial domain-based quantitative evaluation 
standards. ERGAS is a spectral domain-based quantitative evaluation 
standard. Higher values of MPSNR and MSSIM indicate better quality 
of the reconstructed HSI. While a lower value of ERGAS indicates better 
5 
quality of the reconstructed HSI. We normalize the grayscale values of 
the HSI and adjust them on a per-band basis to the range [0, 1].

For the hardware platform of the experiments, the model-driven 
methods are tested on a computer equipped with an Intel i9-12900H 
CPU. On the other hand, the data-driven methods are tested on a 
computer with an Intel i9-12900K CPU and an RTX 4090 GPU.

4.1. Simulation experiments

For the dataset, we select the noise-free HSI data of Washington D.C. 
Mall for the comparative experiments. In the simulation experiments, 
we perform size cropping on the Washington D.C. Mall data, resulting 
in a data size of 256 × 256 × 191. The noise types include Gaussian, 
stripe and deadline noise, which are mixed to simulate a noisy dataset 
for evaluation.

To validate the restoration performance in the mixed noise environ-
ment, we simulated six different scenarios for the Washington D.C. Mall 
HSI data. The noise types are a combination of Gaussian noise, stripe 
and deadline noise. The specific descriptions of these noisy scenarios 
as below:

Case 1 (Gaussian + Pepper + Stripe): For the WDC Mall dataset, we 
add independent Gaussian noise with a standard deviation 𝜎 ranging 
from 0.1 to 0.2 for each band. We also introduce pepper noise for each 
band with a proportion S ranging from 0.1 to 0.2. Additionally, we 
randomly select 70% bands and add stripe noise. The number of stripes 
is randomly generated between 6 and 15.

Case 2 (Gaussian + Pepper + Deadline): In the WDC Mall dataset, 
we add independent Gaussian noise for each band with a standard 
deviation 𝜎 ranging from 0.1 to 0.2. We also introduce pepper noise to 
each band with a proportion S ranging from 0.1 to 0.2. Furthermore, 
we randomly select 40% bands and add 6 to 10 stripes with a width of 
1 to 3 pixels as deadline noise.

Case 3 (Gaussian + Pepper + Stripe + Deadline): Relied on Case 2, 
we randomly select 70% bands and add stripe noise. The number of 
stripes is randomly generated between 6 and 15.

Case 4 (Gaussian + Pepper + Stripe + Deadline): Like Case 2, we 
add Gaussian noise, pepper noise, and deadline noise to each band. 
However, in this case, we increase the proportion of select bands from 
40% to 70%.

Case 5 (Gaussian + Pepper + Stripe + Deadline): Extending Case 4, 
we continue to randomly select 70% bands and add stripe noise. The 
number of stripes is randomly generated between 6 and 15.

Case 6 (Gaussian + Pepper + Stripe + Deadline): In this case, we add 
independent Gaussian noise to each band with a standard deviation 𝜎
of 0.2. We also introduce pepper noise to each band with a proportion 
S of 0.2. Additionally, we randomly select 40% bands and add stripe 
noise with a randomly generated number of stripes between 6 and 15. 
Furthermore, we randomly select 20% bands and impose with deadline 
noise. The deadline noise consists of 5 to 10 randomly generated 
stripes, with the width of 1 to 3 pixels.

To better evaluate the quality of denoised HSI, the performance 
of all methods in terms of three quantitative evaluation metrics, MP-
SNR, MSSIM, and ERGAS, is recorded in Table  1. The optimal metrics 
are highlighted with bold format, while the second-best metrics are 
indicated with underline format. The following part describes the spe-
cific HSI denoising results, enlarged local images, and analysis of the 
experimental results:

(1) Case 1: As shown in Fig.  2, NGMeet could remove random and 
stripe noise well. However, it exhibits spectral distortion issues. STCR 
can effectively remove random noise, but it lacks to eliminate coarse 
stripe noise. LRTV performs well in removing both random noise and 
stripe noise, while the restored results tend to be over-smoothing and 
cannot well preserve texture information. Compared to the contrast 
methods, CTV performs poorly on removing random noise and cannot 
remove stripe noise. RCTV performs well on removing random noise 
and achieves a second-best performance on the evaluation metrics. 



Q. Zhang et al. Engineering Applications of Artiϧcial Intelligence 149 (2025) 110508 
Table 1
Quantitative evaluation metrics in the simulation experiment on the Washington D.C. Mall HSI data.
 Case Index Noisy NGMeet STCR LRTV CTV RCTV MAN QRNN3D HSID Proposed 
 
Case 1

MPSNR 10.74 22.93 28.93 25.97 22.19 30.26 20.01 20.12 22.89 31.37  
 MSSIM 0.119 0.746 0.807 0.651 0.595 0.888 0.508 0.617 0.653 0.917  
 ERGAS 1266 339.9 155.4 206.6 441.1 130.2 648.8 433.1 316.1 113.0  
 
Case 2

MPSNR 11.04 24.29 29.14 26.01 24.81 31.01 20.11 20.34 23.18 32.22  
 MSSIM 0.124 0.761 0.837 0.656 0.656 0.895 0.539 0.619 0.675 0.927  
 ERGAS 1214 277.7 139.2 209.5 242.6 123.5 592.5 420.6 306.7 102.2  
 
Case 3

MPSNR 10.74 23.09 28.46 25.73 21.78 29.69 20.28 20.67 22.86 31.69  
 MSSIM 0.117 0.741 0.848 0.654 0.575 0.874 0.506 0.618 0.653 0.921  
 ERGAS 1259 328.5 157.7 218.6 454.9 146.8 614.9 410.6 318.4 107.9  
 
Case 4

MPSNR 11.05 24.45 28.45 25.69 24.35 30.25 20.19 20.51 23.26 32.19  
 MSSIM 0.122 0.758 0.832 0.674 0.641 0.883 0.534 0.614 0.664 0.926  
 ERGAS 1208 272.4 146.9 218.3 256.4 138.9 625.3 428.6 305.2 103.1  
 
Case 5

MPSNR 10.80 23.36 27.33 25.60 21.83 29.54 19.27 19.69 21.98 31.68  
 MSSIM 0.117 0.741 0.808 0.641 0.571 0.866 0.496 0.594 0.635 0.921  
 ERGAS 1251 316.3 196.8 224.6 446.8 152.1 595.9 472.7 361.2 108.6  
 
Case 6

MPSNR 9.309 21.64 27.35 24.46 20.66 28.28 18.88 19.04 21.83 29.68  
 MSSIM 0.079 0.700 0.808 0.556 0.485 0.826 0.479 0.564 0.613 0.892  
 ERGAS 1470 375.6 190.7 246.4 431.9 160.5 625.9 504.2 358.5 138.5  
 Time (s) – 59.32 26.76 76.35 68.81 34.87 1.16 2.59 2.70 38.34  
Fig. 2. Denoising result for the 100th band of Washington D.C. Mall HSI data in Case 1.
Fig. 3. Denoising result for the 100th band of Washington D.C. Mall HSI data in Case 3.
While RCTV struggles with dense stripe noise. MAN does not show 
well on removing random and stripe noise, resulting in residual noise. 
QRNN3D can effectively remove stripe noise. While it lacks clarity in 
spatial texture details. HSID also suffers from the problem of unclear 
texture details. In contrast, the proposed method effectively removes 
both random noise and dense stripe noise. Furthermore, our approach 
acquires the best effects on the Table  1.
6 
(2) Case 3: To verify the impact of dense deadline noise, we increase 
the deadline noise in this case. As shown in Fig.  3, NGMeet performs 
well on removing dense deadline noise. While it exhibits spectral dis-
tortion issues and produces over-smoothing restoration results. STCR, 
CTV, LRTV, and RCTV methods perform poorly on removing dense 
deadline noise. Among them, RCTV performs better than CTV, LRTV, 
and LRMR on removing random noise and achieves second-best results 
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Fig. 4. Spectral curves for position (150, 200) of Washington D.C. Mall HSI data in Case 3.
Fig. 5. Pseudo-color denoising result for (100, 68, 10) band of Washington D.C. Mall HSI data in Case 5.
in the evaluation metrics. For the restoration results of MAN, there is 
residual random noise and dense deadline noise. QRNN3D and HSID 
exhibit spectral distortion and spatial blurring issues when dealing with 
dense deadline noise. In Fig.  3(k), the proposed method performs better 
on removing dense deadline noise. It can also suppress the random 
noise present in Fig.  3(b).

In order to better verify the spectral fidelity of the proposed method, 
we present a visual rendering of the spectral curve of pixels (150, 200) 
in Case 3. As shown in Fig.  4, the spectral curves of NGMeet and 
STCR could be close to the clean spectral curve. While the noise in 
the spectral dimension still remains, resulting in a small fluctuation 
of the spectral curve. LRTV, CTV and CTV are not clean for dense 
noise, resulting in large fluctuations in the spectral curve after recovery. 
The three deep learning-based methods, MAN, QRNN3D, and HSID, 
are less adaptable when faced with complex noise scenarios because 
they rely too much on a large number of samples to achieve denoising. 
Therefore, the recovery spectral curve is poorly fitted to the spectral 
curve of the clean HSI. On the basis of low-rank tensor decomposition, 
the proposed method considers the spectral information of the whole 
band, and explores the spectral continuity and consistency through 
spectral difference. Therefore, the recovered spectral curve is closer to 
the spectral curve that is not polluted by noise.

(3) Case 5: As shown in Fig.  5, NGMeet, QRNN3D, HSID lose texture 
detail while removing denser stripe and deadline noise, resulting in the 
over-smoothing results. STCR and RCTV cannot remove coarse stripe 
noise very well. LRTV, CTV, and MAN cannot show satisfactory results 
in removing deadline noise. At the same time, as shown in Fig.  5(k), 
the proposed method performs the best on removing dense stripe and 
deadline noise. It also achieves the best results in all three quantitative 
evaluation metrics.
7 
Based on the data in Table  1, JSSDC-LRTF shows significant im-
provements in quantitative metrics from Case 1 to Case 6. Particu-
larly, in terms of the MPSNR metric, there is an average enhancement 
of 1.64 dB, surpassing the comparative methods. This indicates that 
the proposed method achieves superior results in terms of evaluation 
metrics.

As shown in Figs.  2 and 3, the proposed method demonstrates supe-
rior performance in recovering spatial texture details, compared with 
other comparative methods. This can be attributed to the utilization 
of both horizontal and vertical difference constraint in our approach, 
enabling effective restoration of spatial details in HSI. Furthermore, for 
the pseudo-color restoration results in Fig.  5 and the spectral curves in 
Fig.  4, the proposed method exhibits less spectral distortion, compared 
with other comparative methods. This can be attributed to the incorpo-
ration of difference constraint on the spectral dimension, ensuring the 
preservation of spectral information for the restored image.

In summary, JSSDC-LRTF achieves obvious improvements in both 
quantitative metrics and visual effects, by simultaneously leveraging 
difference constraint in both spatial and spectral directions.

4.2. Real experiments

To further prove the denoising effectiveness and practicality of 
the proposed method for HSI with mixed noise. This section conducts 
experiments using real HSI data, including EO-1, Urban, and GF-5 
datasets. The EO-1 HSI is acquired by the Hyperion hyperspectral 
imager and has a spatial size of 200 × 200 and 166 bands. The Urban 
HSI data is captured by the HYDICE sensor and has a spatial size of 
307 × 307. The original data consists of 210 bands. After removing 
several strong noisy bands, 188 bands are retained for the experiments. 
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Fig. 6. Denoising result for the 166th band of EO-1 HSI data.

Fig. 7. Pseudo-color denoising result for the (187, 104, 24) band of Urban HSI data.

Fig. 8. Pseudo-color denoising result for the (152, 96, 43) band of GF-5 Shanghai HSI data.
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Fig. 9. Sensitivity analysis of model parameters.
The GF-5 HSI data is collected over the Shanghai area and has a spatial 
size of 300 × 300, with 155 bands. This data is corrupted by Gaussian, 
dense stripe and deadline noise.

The noise intensity and types vary among these HSIs. The specific 
denoising results and experimental analysis are given as follows.

(1) EO-1 Data: Fig.  6 depicts the denoising results for the 166th band 
of EO-1 HSI data using nine different HSI denoising methods. As shown 
in Fig.  6(a), it is evident that this HSI is contaminated by Gaussian and 
stripe noise. Notably, Fig.  6(c)–(e) reveal that STCR, LRTV and CTV 
exhibit noticeable stripe noise artifacts. NGMeet effectively removes 
stripe and Gaussian noise in Fig.  6(b), while the denoised result is 
over-smoothing. RCTV, while removing mixed noise, still exists residual 
stripe noise artifacts. In the results of MAN and QRNN3D, the stripe 
noise in Fig.  6(g) and (h) is still obvious. The result of HSID shows spec-
tral distortion. The proposed method effectively removes mixed noise 
in EO-1 HSI data and demonstrates superior performance, compared 
with the contrastive approaches.

(2) Urban Data: In Fig.  7, the pseudo-color HSI denoising results 
for the (187, 104, 24) band of the Urban HSI data are presented for 
comparison using nine different methods. This HSI is primarily affected 
by random and stripe noise. As shown in Fig.  7(b)–(f), NGMeet, LRTV, 
and RCTV exhibit residual artifacts. STCR and CTV fail to effectively 
remove stripe noise, resulting in remaining thin stripe noise artifacts 
in the denoising results. In Fig.  7(g)–(i), MAN, QRNN3D and HSID 
could remove both thin stripe noise and random noise. However, MAN 
suffers from spectral distortion, while QRNN3D and HSID lack clear 
spatial texture details. In contrast, JSSDC-LRTF not only effectively 
removes mixed noise on this HSI, but also achieves satisfactory results 
in preserving spatial details and spectral fidelity.

(3) GF-5 Data: Fig.  8 illustrates the pseudo-color denoising results 
of NGMeet, STCR, LRTV, CTV, RCTV, MAN, QRNN3D, SQAD, and the 
proposed method for the (152, 96, 43) band of the GF-5 HSI data. 
This data is primarily contaminated by dense stripe noise and deadline 
noise, which is more challenging. As shown in Fig.  8, the denoising 
result of NGMeet exhibits over-smoothing effects. LRTV, CTV and RCTV 
exist noticeable residual stripe noise and deadline noise. STCR, MAN, 
QRNN3D and HSID could remove dense deadline and stripe noise, but 
they appear the spectral distortion in different degrees. Additionally, 
QRNN3D damages the texture details. In comparison to the contrast 
methods, the proposed method effectively removes dense stripe noise 
and deadline noise. Moreover, it can preserve spatial texture details 
without obvious spectral distortion.

The denoising results of above real HSI datasets demonstrate that 
JSSDC-LRTF leverages spatial and spectral difference constraint, taking 
both spatial details and spectral correlations into account. This allows 
our method to remove high-intensive mixed noise in HSI data more 
effectively than comparison methods.

4.3. Parameter sensitivity analysis

To analyze the parameters sensitivity of JSSDC-LRTF, we conduct 
a quantitative analysis on four important parameters in Case 6 of the 
simulated experiments, as shown in Fig.  9. The four parameters are 
rank 𝑟 (characterizes the global spectral correlation of HSI), gradient 
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Table 2
Quantitative evaluation metrics in the simulation experiments on the CAVE MSI data.
 Index Noisy NGMeet STCR LRTV CTV RCTV Proposed 
 MPSNR 17.14 33.86 37.81 41.00 32.08 40.47 44.18  
 MSSIM 0.267 0.814 0.924 0.982 0.914 0.914 0.985  
 ERGAS 808.6 128.3 82.64 52.27 149.3 57.10 36.31  

tensor regularity coefficient 𝜏 (plays an important role in excavating 
spatial–spectral information), sparse noise regularization coefficient 
𝜆 (trade-off parameter), Gaussian noise regularization coefficient 𝛽
(trade-off parameter). For different noise scenes, the parameter set-
tings are also different. When most of the noise follows a Gaussian 
distribution, it is usually possible to set a smaller value of 𝛽 between 
[1,10], a larger value of 𝜆 between [50,100], and to fine-tune 𝜏 between 
[0,1] (by increasing parameter 𝜆 to enhance the removal of sparse 
noise, while keeping parameter 𝛽 small to avoid excessive smoothing). 
For the case where most noise follows a mixed distribution (sparse 
noise with more Gaussian noise with less), we can set 𝜆 to a smaller 
value between [1,10], 𝛽 to a larger value between [50,100], and then 
fine-tune 𝜏 between [0,1] (by increasing the parameter 𝛽 to avoid 
ignoring Gaussian noise. The parameter 𝜆 is smaller to finely remove 
these significant sparse noises). However, in real scenes, the noise 
distribution of HSI is usually mixed and dense, so this paper pays more 
attention to the mixed noise scene. For all scenes in this paper (which 
are all mixed noise), the four parameters 𝑟, 𝜏, 𝛽 and 𝜆 are set between 
[3,6], [0,1], [50,100] and [1,10] respectively for fine tuning, to achieve 
the best noise reduction effects. When the noise is denser, we could 
narrow the parameter range to [3,6], [0.8, 0.95], [1,2.5], [70,85], 
respectively (taking Case 6 as an example).

4.4. Multispectral image experiments

We select a scene in the CAVE dataset and add mixed noise (Gaus-
sian + salt and pepper + deadline + stripe) to verify the effectiveness 
of the proposed method for noise removal in multispectral images. The 
specific indicators and visuals are shown below (see Fig.  10 and Table 
2).

It could be observed that compared with the SOTA method, the pro-
posed method can not only remove the mixed noise of the multispectral 
image, but also maintain the clear texture details.

4.5. Classification results

Generally, HSI denoising is benefit for classification, through remov-
ing the polluted noise in HSI. To ulteriorly validate the availability of 
different HSI restoration methods, classification results before and after 
HSI denoising are carried out in this subsection.

Based on supervised SVM strategy, ground-truth classes are utilized 
for verifying the classification precision, as portrayed in Fig.  11. The 
classification accuracy indexes (OA and kappa coefficient) are listed 
in Table  3. These HSI classification results for Pavia University data 
are displayed in Fig.  11. Compared with noisy HSI, different HSI 
denoising methods contribute to subsequent classification tasks. This 
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Fig. 10. Pseudo-color denoising result for the (14, 26, 4) band of CAVE MSI data.
Fig. 11. HSI classification results for Pavia University data before and after HSI denoising.
Table 3
HSI classification accuracy indexes for Pavia University HSI data before and after denoising.
 Index Clean Noisy NGMeet STCR LRTV CTV RCTV MAN QRNN3D HSID Proposed 
 OA 0.886 0.394 0.725 0.799 0.712 0.727 0.775 0.699 0.808 0.729 0.827  
 Kappa 0.863 0.205 0.622 0.704 0.604 0.665 0.693 0.596 0.721 0.632 0.787  
also validates the effectiveness and meaning for HSI denoising. From 
the classification accuracy, kappa coefficient and visual classification 
effect of the quantitative indexes, compared with other methods, the 
proposed method effectively improves the accuracy of the HSI classifi-
cation task after removing mixed noise. Besides, and the classification 
effects of the proposed method are the best.

5. Conclusion

For HSI mixed noise removal, this paper proposes a jointly spatial 
and spectral difference constraint with low-rank tensor factorization 
model. The developed approach effectively removes the mixed noise 
in HSI by leveraging the tensor’s intrinsic structural information, while 
preserving its three-dimensional structure. Experiments on both sim-
ulated and real data confirm the excellence of the proposed method, 
particularly for high-intensive mixed noise. In the future, we will con-
struct a joint noise model (Gaussian and sparse noise) to characterize 
10 
the noise characteristics of hyperspectral and multispectral images, by 
analyzing the spatial and spectral correlations of noise. the tensor de-
composition strategy will be used to decompose the HSI into low-rank 
components and sparse noise components, so as to achieve denoising 
and provide a theoretical basis for the multi-source image denoising 
algorithm.
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