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 a b s t r a c t

Recent efforts have witnessed significant progress in deep-learning-based hyperspectral image super-resolution 
(HSISR). However, most existing methods focus solely on spatial or spectral exploration, while lacks enough 
consideration of the intrinsic correlation between these aspects. This oversight limits the potential for collab-
orative optimization, leading to suboptimal feature representations of HSI. Moreover, they mainly engaged in 
super-resolve the pixel-wise spatial details, neglecting the vital spectral consistency. To mitigate these issues, this 
paper proposed LRTENet, a novel deep low-rank tensor embedding network for HSISR, which effectively bridges 
the optimization gap between spatial and spectral features with well-defined low-rank tensor decomposition. 
Specially, we introduce a low-rank embedding module (LREM) to extract low-rank dependencies across multiple 
directions facilitating a holistic mapping by adaptively integrating these tensors. This enables our model to gen-
erate discriminative spatial-spectral representations for accurate reconstruction. Furthermore, to better preserve 
the spectral consistency, we incorporate LREM after upsample operation to progressively refine and correct 
spectral distortion. Extensive experiments demonstrate that LRTENet achieves superior spatial reconstruction 
and spectral preservation performance, outperforming state-of-the-art methods on various benchmarks, includ-
ing Chikusei, CAVE, and Pavia.

1.  Introduction

Hyperspectral imaging can record multiple narrow and continuous 
spectral bands in the electromagnetic spectrum, ranging from visible 
light to near-infrared and even short-wave infrared. Benefiting from 
these unique advantages, hyperspectral images (HSI) provides rich spa-
tial and spectral information and has been widely used in various appli-
cations (Ghamisi et al., 2017), including agriculture (Sahadevan, 2021) 
and environmental monitoring (Tan et al., 2020), mineral exploration 
(Hajaj et al., 2024), hyperspectral change detection (Zhou et al., 2025), 
etc. However, limited by the bandwidth of imaging sensors, HSI often 
strike back and forth between spatial and spectral resolution (Loncan 
et al., 2015). Generally, to obtain rich spectral information, it is in-
evitable to sacrifice spatial resolution, resulting in high-frequency infor-
mation loss and posing challenges for downstream tasks (Gendy et al., 
2023; Liang et al., 2018; Villa et al., 2013), such as spectral unmixing, 
classification, and object detection. Therefore, it is of practical signifi-
cant to increase the spatial resolution of HSI.
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HSISR offers a cost-effective alternative to hardware improvements, 
and can be broadly categorized into two typical approaches (Wang et al., 
2023b) : single-image hyperspectral super-resolution and fusion-based 
hyperspectral super-resolution (Wang & Chen, 2024). Fusion-based 
methods enhance spatial resolution by incorporating high-resolution 
(HR) panchromatic (PAN) or multispectral images (MSI). Despite re-
covering richer spatial details, they often require laborious alignment 
process between HSI and MSI. What’s worse, they suffer from severe 
performance drop when misalignment occurs, resulting in training insta-
bility and suboptimal fusion outcomes. In contrast, single-image HSISR 
could directly reconstruct HR hyperspectral images from low-resolution 
(LR) inputs, offering greater flexibility and practicality for real-world 
applications.

Furthermore, these methods can be divided into traditional (Bu et al., 
2024) and deep learning-based approaches (Chen et al., 2023a; Yan 
et al., 2025). Traditional models usually rely on hand-craft priors, e.g., 
sparse (Akhtar et al., 2015; Dian et al., 2019; Dong et al., 2016; Xu et al., 
2019) and low-rank (Dian et al., 2018; Wang et al., 2017; Xue et al., 
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2021) priors, to build a mapping between LR and HR HSI. These priors 
are often served as regularization terms to constrain the ill-posed recon-
struction process iteratively. However, they are of limited representation 
(Ma et al., 2023) and often require substantial computational resources 
to tame the optimization instability. In contrast, deep learning-based 
methods, propelled by the success of convolutional neural networks, 
can directly learn the mapping (Lepcha et al., 2023) from LR to HR HSI 
using external training data. These methods excel in capturing the non-
linear relationships between spatial and spectral features, significantly 
outperforming traditional SR models. Nevertheless, most deep learning 
methods tend to focus solely on recovering pixel-level spatial details, of-
ten neglecting the critical spectral consistency (Hu et al., 2024) of HSI. 
Although some recent works achieve both spatial and spectral feature 
modeling (Chen et al., 2024a; Liu et al., 2024), they generally optimize 
these processes independently, failing to fully exploit the intrinsic cor-
relation between spatial and spectral information. This oversight often 
leads to suboptimal reconstruction results. More specifically, spatial fea-
ture learning emphasizes enhancing pixel-wise resolution, while spec-
tral feature learning focuses on restoring spectral bands. The inherent 
discrepancy poses significant challenge for joint representation and col-
laborative learning, leading to undesirable spectral inconsistency (Xie 
et al., 2024). The research motivation of this paper lies in the fact that 
existing deep learning methods in the task of hyperspectral image super-
resolution have difficulties in effectively handling the separation of spa-
tial and spectral information optimization and are unable to fully utilize 
the intrinsic correlation between them, resulting in poor reconstruction 
performance.

To address this issue, a straightforward solution is to construct a 
holistic representation of the spatial and spectral relationships. How-
ever, establishing such a mapping is challenging due to the high-rank 
(Chen et al., 2020; Xue et al., 2019; Zhang et al., 2019) nature of HSI. 
In this context, there are at least two key challenges: 1) suboptimal ex-
ploration of high-rank data, and 2) inaccurate spatial-spectral rep-
resentation. More precisely, deep learning-based methods rely heavily 
on external data to extract high-rank HSIs, which inevitably compli-
cates the learning process, especially in limited HSI data scenarios. Ad-
ditionally, there is a lack of efficient scheme for modeling joint low-rank 
spatial and spectral dependencies. Based on these analyses, a natural 
question arises: can we develop a model-driven spatial-spectral collabora-
tive representation framework to enhance the reconstruction performance of 
data-driven networks?

To answer this question, inspired by the tensor decomposition the-
ory (Kolda & Bader, 2009), this paper proposed to decompose the high-
dimensional HSI into multiple low-rank parts for efficient yet effec-
tive spatial-spectral representation. Recently, tensor regularization and 
canonical polyadic (CP) (Kolda & Bader, 2009) decomposition have 
demonstrated favorable advantages in representing high-rank data with 
multiple rank-one low-rank tensors. Based on this, we design a deep 
low-rank tensor embedding network (LRTENet) for HSISR, which effec-
tively extracts the holistic spatial and spectral representation through 
the low-rank reconstruction method, thus improving the efficiency and 
accuracy of spatial-spectral information exploration for high-quality re-
construction.

Specifically, we extract multiple low-rank dependencies from the en-
tire contextual HSI to facilitate the learning of the holistic mapping re-
lationship. To achieve this, we develop a low-rank embedding module 
(LREM), which extracts discriminative rank-one tensors and constructs 
the mapping through a weighted fusion of these tensors. In LREM, a 
rank-one tensor generation module (ROM) was devised, which gener-
ates rank-one tensors by extracting features in multiple directions and 
enhancing contextual information from both spatial and channel dimen-
sions. To further retain and utilize rich spectral features, ROM intro-
duces the channel feature retention pooling (CFRP) strategy and em-
ploys the enhanced localization information (ELI) module for adaptively 
fusing channel features and acquiring high-quality spatial information. 
Furthermore, unlike conventional approaches that perform one-step up-

sampling directly, we integrate the LREM after multi-step upsampling to 
refine and correct spectral information, further alleviating the spectral 
distortion.

To sum up, the contributions of this paper are summarized as follows.

• This paper proposes a deep low-rank tensor embedding network for 
HSISR. The network decomposes the holistic relationship between 
spatial and spectral representations into multiple low-rank compo-
nents through the CP decomposition theory, enabling accurate ex-
pression of complex relationships and thus bridging the optimization 
gap between spatial and spectral representations.

• To generate discriminative low-rank tensors, we design a rank-one 
tensor generation module (ROM) that constructs low-rank dependen-
cies across multiple dimensions. This module adaptively fuses multi-
channel features through attention mechanisms, enhancing the ex-
traction of high-quality spatial details while preserving spectral
fidelity.

• On Chikusei, CAVE, and Pavia datasets, LRTENet outperforms state-
of-the-art HSISR methods in both quantitative and visual evalua-
tions, validating its effectiveness.

2.  Related work

2.1.  Deep learning-based single hyperspectral image super-resolution

Inspired by the huge success of super-resolution convolutional neural 
network (SRCNN) (Dong et al., 2015), deep learning has also demon-
strated remarkable potential for single hyperspectral image super-
resolution (Xue et al., 2024). HSIs are characterized by their rich spec-
tral information, which offers unique opportunities for leveraging both 
spatial and spectral features (Zhang et al., 2020, 2024b). Consequently, 
researchers are motivated to elaborate the network design to effectively 
exploit spatial-spectral features.

The grouped deep recursive residual network (GDRRN) (Li et al., 
2018) employs residual connections and grouped recursive modules 
to mitigate redundancies in HSI data, thereby reducing computa-
tional overhead. Similarly, the 3D fully convolutional cascade cetwork 
(3DFCCN) (Mei et al., 2017) leverages 3D convolution to extract spa-
tial and spectral context from adjacent channels. However, the inherent 
computational burden and parameter-intensive nature of 3D convolu-
tions impose significant limitations, hindering optimal performance. To 
alleviate the challenges posed by high spectral dimensionality, SSPSR 
(Jiang et al., 2020) incorporates grouped convolutions with shared net-
work parameters and adopts a progressive upsampling strategy. It fur-
ther employs a channel attention mechanism to explore inter-spectral 
correlations. In contrast, MCNet (Li et al., 2020) and ERCSR (Li et al., 
2021) combine the strengths of 2D and 3D convolutions, where 2D con-
volutions effectively capture spatial features and 3D convolutions are 
utilized for local spectral feature extraction, resulting in reduced com-
putational complexity. Nonetheless, theirs feature extraction capability 
is constrained by the limited receptive field inherent to convolutions. 
Building upon SSPSR (Jiang et al., 2020), CLSCNet (Xu et al., 2024) in-
tegrates ConvLSTM-based (Shi et al., 2015) skip connections to suppress 
redundant features, while its convolutional modules enhance edge fea-
ture extraction, thereby achieving improved super-resolution accuracy. 
More recently, with the advent of vision transformers, which excel in 
capturing long-range dependencies, Chen et al. proposed MSDformer 
(Chen et al., 2023b). This hybrid framework employs CNNs to extract 
spatial features while leveraging a global spectral transformer to model 
dependencies across all spectral bands, overcoming the limitations of 
CNNs in capturing global context. SRDNet (Liu et al., 2024) and CST 
(Chen et al., 2024a) extend this concept by introducing independent 
transformers for spatial and spectral dimensions to explicitly capture 
long-range dependencies within each domain. EigenSR (Su et al., 2025) 
utilizes pre-trained RGB models to address the issue of data scarcity 
in HSI. This method is based on spatial-spectral decoupling and can

Expert Systems With Applications 299 (2026) 129864 

2 



Q. Zhang et al.

effectively utilize the pre-trained model while maintaining spectral fi-
delity. DSDCN (Muhammad et al., 2025) is designed as a lightweight 
depthwise separable dilated convolutional network. It combines depth-
wise separable convolutions, residual connections, and dilated convolu-
tion fusion to improve spatial resolution.

2.2.  Low-rank tensor representation

Low-rank tensor representations have found widespread applications 
in computer vision tasks due to their ability to efficiently reduce dimen-
sionality and extract meaningful features.

In work (Zhang et al., 2023b), the unsupervised denoising of HSIs 
based on tensor decomposition for mining spectral low-rank priors 
(Zhang et al., 2022) and using deep space priors is proposed. In work 
(Chen et al., 2024b), a denoising and recovery algorithm is proposed to 
mine image prior information by constructing low-rank tensor through 
deep learning and the synergistic effect of model-based framework. In 
work (Zhang et al., 2021a), low-rank tensor singular value decomposi-
tion and tensor product are used to excavate the structural properties of 
multi-temporal images, and depth priors are combined to remove thick 
clouds from time series images. The work (Xue et al., 2021) employs 
a novel subspace clustering method with structured sparse low-rank 
representation for fusion-based hyperspectral image super-resolution. It 
fully considers the spatial and spectral subspace low-rank relationships 
among the available HR-MSI, LR-HSI, and the latent HSI. The work (Yan 
et al., 2023) employs low-rank property embedding to minimize the im-
pact of spectral variations and uses adaptive non-negative sparse coef-
ficients derived from the corresponding HR-MSI to further reconstruct 
the desired HSI, thereby achieving spectral super-resolution.

By leveraging tensor decomposition theories, high-dimensional ten-
sors can be expressed as combinations of multiple low-rank sub-tensors, 
facilitating the representation of the most salient data components while 
suppressing redundancy. The core principle of tensor decomposition lies 
in breaking down the original tensor into smaller, more manageable 
components. Among the popular decomposition techniques, tucker de-
composition represents a tensor as the product of multiple matrices and 
a core tensor, capturing its key structures. On the other hand, CP de-
composition expresses a tensor as the sum of a set of rank one tensors, 
serving as a specific case of tucker decomposition. CP decomposition 
is particularly advantageous in scenarios requiring compact representa-
tions of high-dimensional data.

In work (Chen et al., 2020), a network based on CP decomposition 
to mine context features is proposed for semantic segmentation. In work 
(Zhang et al., 2021b), a tensor-low-rank prior learning network is pro-
posed for snapshot hyperspectral imaging based on CP decomposition 

and generation of discriminative rank tensor. In work (Dian et al., 2024), 
multidimensionwise multihead self-attention is introduced in generating 
basis vectors to improve the ability of CP decomposition to convey infor-
mation, and a spectral super-resolution network based on deep low-rank 
tensor representation is designed.

Building on these approaches, we are motivated to explore the po-
tential of low-rank tensor representations in the domain of hyperspectral 
super-resolution. In this paper, we employ the CP decomposition frame-
work to effectively approximate the complex mapping relationships by 
capturing a global set of rank-one tensors, thus enhancing the resolution 
of hyperspectral images.

3.  Methodology

3.1.  Overview

As illustrated in Fig. 1, the proposed LRTENet consists of three major 
components: shallow feature extraction module, deep feature extraction 
(DF) module, reconstruction module.Given a predefined scaling factor 
𝑠 and low-resolution HSI 𝐼𝐿𝑅 ∈ ℝ𝐶×ℎ×𝑤, LRTENet is designed to learn 
the mapping function 𝐹LRTENet(⋅), to produce the high-resolution HSI 
𝐼𝑆𝑅 ∈ ℝ𝐶×𝑠ℎ×𝑠𝑤. This process can be mathematically formulated as:
𝐼𝑆𝑅 = 𝐹LRTENet(𝐼𝐿𝑅, 𝑠) (1)

where ℎ,𝑤, and 𝐶 represent the height, width, and the number of spec-
tral bands of the HSI, respectively. The overall model flow is detailed as 
follows.

The low-resolution HSI 𝐼𝐿𝑅 is first processed through a shallow fea-
ture extraction layer, represented by 𝐹Extraction(⋅), which is a convolu-
tional operation. The resulting feature 𝑥0 is computed as:
𝑥0 = 𝐹Extraction(𝐼𝐿𝑅) (2)

The extracted shallow features 𝑥0 are then sent through a cascade of 
LREM in the deep feature extraction function 𝐹DF(⋅), resulting in deeper 
feature representations:
𝑥𝑢 = 𝐹DF(𝑥0) (3)

The high-resolution HSI 𝐼𝑆𝑅 is reconstructed by combining the deep 
features 𝑥𝑢 and the upsampled shallow features 𝑥0 ↑ through the recon-
struction module 𝐹Reconstruction(⋅) . This process allows for the integration 
of both deep and shallow information for better reconstruction.
𝐼𝑆𝑅 = 𝐹Reconstruction(𝑥𝑢, 𝑥0 ↑) (4)

Here, 𝑥0 ↑ refers to the upsampled shallow features obtained via the 
pixel shuffle layer. The reconstruction module consists of two convo-
lutional layers, aiming to unifying the channel number of 𝑥𝑢 and 𝑥0 ↑, 

Fig. 1. Overview of the proposed LRTENet. (1) Shallow feature extraction module: This stage extracts the initial features from the input data. (2) Deep feature 
extraction module: This part consists of a cascade of LREM modules.LREM decomposes complex mappings into 𝑟 low-rank mappings through the CP decomposition 
theory. The low-rank mappings are extracted by the ROM, fused by adding them with adaptive weights, and the fused features are enhanced by the FFN. Each LREM 
is designed to capture the overall mapping relationships of the features, facilitating the seamless integration of spatial and frequency information. (3) Reconstruction 
module: This final stage reconstructs the output.
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Fig. 2. Illustration of the third - order tensor CP decomposition, where the symbolic notations correspond to the respective equation symbols.

followed by residual learning to stabilize the optimization process. It 
is worth noting that during our experiments, we found that residual 
learning methods may vary for different datasets. More specific imple-
mentation details are provided in the experimental section.

3.2.  Low-rank embedding module

Our objective is to maintain spectral consistency by jointly modeling 
spatial and spectral features. However, capturing such spatial-spectral 
mapping presents a significant challenge due to the high-rank nature of 
hyperspectral feature representations. This complexity arises from the 
high dimensionality of hyperspectral data and is further exacerbated by 
the expansion of feature channels during shallow feature extraction. Di-
rectly learning such complex mappings is computationally prohibitive 
and tend to reaching suboptimal performance. Inspired by the CP de-
composition theory and recent advancements in tensor reconstruction 
(Chen et al., 2020; Zhang et al., 2021b), this study adopts a low-rank 
representation strategy to simplify the high-dimensional data modeling 
procedure. This approach not only mitigates the challenges of high-rank 
tensor learning but also facilitates a more efficient yet effective repre-
sentation of the spatial-spectral correlations.

Before delving into the specific implementation of LREM, we first 
present the theoretical formulation of the CP decomposition for a 3rd-
order tensor.

Assume that in the row, column, and spectral directions, there are 3𝑟
vectors 𝑣𝑐𝑖 ∈ ℝ𝑐 ,𝑣ℎ𝑖 ∈ ℝℎ and 𝑣𝑤𝑖 ∈ ℝ𝑤,where 𝑖 ∈ 𝑟 and 𝑟 is the prede-
fined rank. These vectors are the CP decomposition components of the 
tensor 𝐴 ∈ ℝ𝑐×ℎ×𝑤. The tensor A can then be reconstructed from these 
decomposition components as defined by:

𝐴 =
𝑟
∑

𝑖=1
𝜆𝑖𝑣𝑐𝑖 ⊗ 𝑣ℎ𝑖 ⊗ 𝑣𝑤𝑖 (5)

⊗ represents the Kronecker product operatio, and 𝑣𝑐𝑖, 𝑣ℎ𝑖, and 𝑣𝑤𝑖 are 
referred to as rank-one Kronecker basis vectors. The expression 𝑣𝑐𝑖 ⊗
𝑣ℎ𝑖 ⊗ 𝑣𝑤𝑖 represents a rank-one tensor. This formula indicates that a 3rd-
order high-rank tensor can be expressed as a weighted sum of several 
low-rank tensors. 𝜆𝑖 is the weight factor for each rank-one tensor. This 
process is illustrated in Fig. 2, where the gray-blue color represents the 
weights, the vertical orange vector represents 𝑣ℎ𝑖, the horizontal orange 
vector represents 𝑣𝑤𝑖, and the yellow vector represents 𝑣𝑐𝑖.

Based on the CP decomposition representation of third-order tensors 
mentioned above, high-rank tensors can be effectively approximated as 
a combination of multiple rank-one low-rank tensors. To leverage this 
property, we designed the LREM.

As illustrated in Fig. 1 and implementation details provided in
Algorithm 1, the LREM comprises three components: feature normal-
ization, low-rank feature reconstruction, and feature enhancement.
1) Feature normalization: This stage aims employing normalization 

(Zhang et al., 2025) layers to accelerate the optimization process 
(Wang et al., 2024). This operation can be mathematically expressed 
as:

𝑥𝑛𝑜𝑟𝑚 = 𝐹Norm(𝑥𝑖𝑛𝑝𝑢𝑡) (6)

Algorithm 1 Implementation of low-rank embedded modules.
Require: Input tensor 𝑥input
1: Hyperparameter 𝑟 = 5 (number of low-rank tensors)
Ensure: Output tensor 𝑥output
2: Feature normalization:
3: 𝑥𝑛𝑜𝑟𝑚 ← 𝐹Norm(𝑥𝑖𝑛𝑝𝑢𝑡)
4: Low-rank feature reconstruction:
5: Initialize 𝑖 = 1, 𝑥𝑟 = 0, mid1 = 𝑥𝑛𝑜𝑟𝑚, mid0 = 0
6: for 𝑖 = 1 → 𝑟 do
7:  mid1 ← mid1 −mid0
8:  mid0 ← 𝐹ROM𝑖

(mid1) ⊳ 𝐹ROM: Rank-one Tensor Generation 
  Module

9:  𝑥𝑟 ← 𝑥𝑟 + 𝜆𝑖 ⋅mid0 ⊳ 𝜆𝑖: learnable weight
10: end for
11: Feature enhancement:
12: 𝑥𝑔 ← 𝑥𝑟 ⊙ 𝑥norm + 𝐹DWC(𝑥norm) ⊳ 𝐹DWC: Depthwise Convolution
13: 𝑥output ← 𝐹FFN(Concat(𝑥input, 𝑥𝑔)) + 𝑥input ⊳ 𝐹FFN: Feed-Forward 

 Network
14: return 𝑥output

where 𝐹Norm refers to layer normalization. 𝑥𝑖𝑛𝑝𝑢𝑡 represents the input 
features of the LREM. The output features after normalization are 
denoted as 𝑥𝑛𝑜𝑟𝑚.

2) Low-rank feature extraction: the high-rank mapping is decom-
posed into 𝑟 low-rank subproblems. This approach learns the low-
rank dependencies between joint spatial and spectral features and 
aggregates them with adaptive weights to reconstruct the high-rank 
mapping. Each of these 𝑟 low-rank subproblems is addressed us-
ing rank-one tensor generation modules (ROM). The ROM extracts 
contextual information, incorporating both channel and spatial di-
mensions, to construct rank-one tensors 𝑎𝑖. Additionally, residual 
learning is employed within ROM to enhance the discriminability of
individual rank-one tensors (Zhang et al., 2021b), ensuring that each 
tensor captures unique and significant features. The rank-one ten-
sors are subsequently aggregated using learnable (Chen et al., 2020; 
Xiao et al., 2025b) parameters 𝜆𝑖, allowing the model to reconstruct 
the target tensor with discriminative capability. This method, lever-
aging learnable parameters for aggregation, surpasses traditional 
convolution-based aggregation methods (Dian et al., 2024; Zhang 
et al., 2021b) by facilitating the exploration of richer rank-based fea-
tures. The process is mathematically expressed as:

𝑎𝑖 = 𝐹ROM𝑖

(

𝑥𝑛𝑜𝑟𝑚 −
𝑖−1
∑

𝑗=0
𝑎𝑗

)

, (7)

𝑥𝑟 =
𝑟−1
∑

𝑖=0
𝜆𝑖𝑎𝑖 (8)

Eq.  (7) describes the construction of discriminative rank-one ten-
sors within the ROM, which extracts low-rank features by lever-
aging contextual spatial and spectral information. This process en-
hances the model’s ability to capture unique and diverse feature
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representations. Eq.  (8) demonstrates the aggregation and mapping 
relationship for reconstructing the target tensor, where the learn-
able parameters dynamically adjust the contribution of each rank-
one tensor to the final representation.

3) Feature enhancement: This component focuses on generating the 
holistic representations and refining them through a feedforward 
network (FFN). Specifically, the joint spatial and channel features are 
obtained by performing element-wise multiplication between the 𝑥𝑟
and the initial input features. Considering that low-rank tensor rep-
resentations may inherently discard some feature components, we 
draw inspiration from existing approaches (Han et al., 2024), and 
integrate depthwise convolution (DWC) modules. The DWC modules 
are utilized to preserve feature diversity and recover missing compo-
nents effectively. The process can be expressed mathematically as: 
𝑥𝑔 = 𝑥𝑟 ⊙ 𝑥𝑖𝑛𝑝𝑢𝑡 + 𝐹DWC(𝑥𝑖𝑛𝑝𝑢𝑡) (9)

FFN plays a pivotal role in enhancing feature representation (Chen 
et al., 2025; Han et al., 2024; Neupane et al., 2024; Zhang et al., 2023a; 
Zhou et al., 2024; Zhu & Liu, 2025). The architecture of the FFN is shown 
in Fig. 1. It consists of three parts: pointwise convolution (PWC), a 3×3 
convolution, and leaky rectified linear unit (LReLU) activation. The fea-
tures from the overall mapping are concatenated along the channel di-
mension with the input features of the LREM. This combined feature 
is subsequently passed through the FFN, allowing the network to adap-
tively refine and enhance the extracted features. Additionally, a skip 
connection is employed to directly link the input of the LREM to its out-
put, facilitating efficient reconstruction and making it easier to retain 
valuable information during the SR process. This process can be mathe-
matically expressed as:
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐹FFN(𝐹Cat (𝑥𝑖𝑛𝑝𝑢𝑡, 𝑥𝑔)) + 𝑥𝑖𝑛𝑝𝑢𝑡 (10)

where 𝑥𝑔 denotes the joint spatial-spectral features extracted by the 
LREM. Cat refers to the concatenation operation,𝑥𝑜𝑢𝑡𝑝𝑢𝑡 is the output fea-
ture of the LREM.

Most existing networks employ upsampling layers that primarily tar-
get the spatial dimension, while largely overlooking the intricate inter-
dependencies between spatial and spectral information in hyperspectral 
images. This limitation often compromises spectral consistency during 
reconstruction. To address this challenge, we incorporate multi-layer 
LREMs following the upsampling process. These modules are specifi-
cally designed to iteratively refine the spatial-spectral representations 
at the target resolution, thereby enhancing the spectral fidelity.

The deep feature extraction phase is composed of two sequential 
stages, which collaboratively process features to yield 𝑥𝑢.

The first stage is the upsampling phase, which employs a progressive 
upsampling strategy designed to decompose the one-step reconstruction 

into incremental steps, mitigating the difficulties of high-resolution fea-
ture reconstruction. Following upsampling, features at the target spa-
tial resolution are further refined to enhance spectral consistency. This 
phase corrects and adjusts the spectral representations using stacked 
LREMs. The pixel shuffle layer is utilized within the upsampling layers 
for efficient upscale, while LREMs are applied iteratively to extract and 
refine deep features.
𝑥𝑢 = 𝐹SC(𝐹UP(𝑥0)) (11)

where 𝐹UP represents the upsampling phase, which adopts a progressive 
upsampling strategy and thus includes two sub-stages of feature extrac-
tion. 𝐹SC refers to the refinement and correction of spectral information, 
where the pixel shuffle method is applied in the upsampling layer. Deep 
features are extracted using LREM at each stage.

3.3.  Rank-one tensor generation module

As shown in Fig. 3, ROM draws inspiration from prior works (Chen 
et al., 2020; Xiao et al., 2025b). We adopted a compromise method, 
which retained the channel information of the basis vectors on the ba-
sis of obtaining the basis vectors by global pooling in priorworks (Chen 
et al., 2020; Xiao et al., 2025b). Specifically, we transform the 3D fea-
ture into a low-dimensional feature representation and construct the de-
composition framework of the ROM. Unlike existing approaches (Chen 
et al., 2020; Xiao et al., 2025b), which primarily utilize global pool-
ing (Zhang et al., 2024a; Zhao et al., 2017) to extract coarse contextual 
information, our ROM considers the detailed extraction of row and col-
umn features, critical for hyperspectral image data that contains abun-
dant spectral information. To address the limitations of global pooling 
in hyperspectral image processing, we adopt a channel-preserving pool-
ing strategy. This method ensures that while global contextual features 
(Fang et al., 2024) are extracted through pooling operations for row and 
column dimensions, the spectral information, pivotal for hyperspectral 
image, can be carefully preserved. This dual focus on spatial and spec-
tral information ensures robust feature extraction, specifically for HSISR 
tasks. The process of globally capturing features in different directions 
through channel-preserving pooling can be expressed as follows:
𝑥𝑐 , 𝑥ℎ, 𝑥𝑤 = 𝐹CFRP(𝑥𝑖𝑛𝑝𝑢𝑡) (12)

Eq. (12) represents the process of globally capturing features in different 
directions through channel-preserving pooling. And this process can be 
demonstrated by the operation of CFRP shown in Fig. 3, yielding 𝑥𝑐 ∈
𝑅𝐶×1×1, 𝑥ℎ ∈ 𝑅𝐶×𝐻 , 𝑥𝑤 ∈ 𝑅𝐶×𝑊 .

To further enhance the extraction of spatial features while preserving 
channel information, we introduce ELI module. This module adaptively 
fuses rich spectral features to extract the row and column basis vectors 

Fig. 3. The proposed rank-one tensor generation module (ROM).
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in the spatial domain, as illustrated by the following equations:
{

𝑣ℎ = 𝑢(𝜎((𝐹ELI(𝑥ℎ)))),
𝑣𝑤 = 𝑢(𝜎((𝐹ELI(𝑥𝑤))))

(13)

where 𝐹ELI represents the ELI module, 𝜎(⋅) denotes sigmoid activation, 
and 𝑢(⋅) means adding a tensor dimension to match subsequent calcula-
tions.

The ELI module employs a Conv1D-ReLU-Conv1D architecture, uti-
lizing 1D convolutional kernels with a size of 7 rather than conventional 
2D convolutions. This choice is motivated by the computational effi-
ciency of 1D convolutions, which are significantly more lightweight (Shi 
et al., 2024). By stacking two large-kernel convolutional layers (Xiao 
et al., 2024) and adjusting the number of channels in the hidden layers, 
the ELI module progressively aggregates spatial information. This design 
effectively captures large-scale spatial features within HSI objects, while 
enhancing the interaction and localization capabilities of embedded spa-
tial information. Furthermore, the ELI module facilitates the learning of 
pixel-level unique weights, enabling precise feature extraction.

Furthermore, since both row and column features are extracted in the 
spatial dimension, ELI serves as a shared (Xu & Wan, 2024) module for 
extracting these row and column features. Inspired by the SENet (Hu 
et al., 2018) architecture, which extracts channel weights to capture 
inter-channel relationships, we employ a Bottleneck structure following 
the global pooling operation to derive basis vectors along the channel 
dimension. This design reduces the number of channels in the hidden 
layers, enabling efficient extraction of channel-specific features (Nandi 
et al., 2023; Xiao et al., 2025a). The process can be mathematically 
expressed as:
𝑣𝑐 = 𝜎((𝐹Bottleneck (𝑥𝑐 ))) (14)

where 𝐹Bottleneck denotes the bottleneck (Hu et al., 2018; Wang et al., 
2023a) structure, which is specifically implemented as PWC-ReLU-PWC 
structure, and 𝜎(⋅) denotes sigmoid activation.

To facilitate the construction of rank-one tensors within the network, 
a broadcasting mechanism is employed during the element-wise multi-
plication of tensors. This operation is analogous to the decomposition 
outlined in Eq.  (5), enabling the generation of rank-one tensors. The 
process is defined as:
𝑥𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜆𝑣𝑐 ⊙ 𝑣ℎ ⊙ 𝑣𝑤 (15)

where ⊙ denotes the Hadamard product.𝑣𝑐 ∈ ℝ𝐶×1×1, 𝑣ℎ ∈ ℝ1×𝐻×1, 𝑣𝑤 ∈
ℝ1×1×𝑊  are the basis tensors obtained through the operations in 
Eqs. (14) and (13) in different directions. 𝜎 represents the sigmoid func-
tion used for feature normalization. 𝑥𝑜𝑢𝑡𝑝𝑢𝑡 is the resulting rank-one ten-
sor.

4.  Experiments

4.1.  Datasets and settings

4.1.1.  Datasets
The Chikusei (Yokoya & Iwasaki, 2016) dataset was acquired us-

ing the Headwall Hyperspec-VNIR-C imaging sensor, capturing agri-
cultural and urban areas in Chikusei, Ibaraki Prefecture, Japan. The 
dataset spans a spectral range of 363–1018nm across 128 bands, with 
a spatial resolution of 2517 × 2335 pixels. The CAVE (Yasuma et al., 
2010) dataset was collected using a cooled CCD camera and comprises 
diverse real-world materials and objects. It covers a spectral range of 
400–700nm across 31 spectral bands. Each hyperspectral image has a 
spatial resolution of 512 × 512 pixels, and the dataset includes 32 hyper-
spectral scenes.The Pavia1 Center dataset was captured using a reflective 
optical system imaging spectrometer sensor. After removing water va-
por absorption and noisy bands, the dataset contains 102 spectral bands 

1 https://ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_
Scenes

from an original 115. The spatial resolution of the hyperspectral images 
is 1096 × 1096 pixels.

4.1.2.  Implementation details
1) Model details: Unless explicitly stated, the convolution kernel size 

throughout the network is uniformly set to 3×3. For specific con-
volution kernel sizes, detailed descriptions are provided within the 
text or corresponding figs. The number of feature channels is set to 
256. The deep feature extraction process is divided into two stages. 
The first stage employs a progressive upsampling strategy, further 
subdivided into two sub-stages, followed by a spectral-preserving re-
finement stage. Each stage incorporates three LREMs. The rank (𝑟) 
for each ROM is set to 5, while the channel reduction ratio (𝑑) in the 
Bottleneck and ELI modules is set to 16. For residual learning, dis-
tinct strategies are adopted based on dataset characteristics: 1) For 
the Chikusei and Pavia datasets, a shallow-feature pixel-shuffling up-
sampling approach is utilized, and 2) For the CAVE dataset, bicubic-
interpolated upsampled images of the LR inputs are employed.

2) Training details: For hyperspectral image super-resolution, the loss 
function is typically defined using either the 𝑙1 or the 𝑙2. Since the 𝑙2
often results in overly smoothed outputs, this paper adopts the 𝑙1 as 
the loss function for the model, defined as:

𝐿𝑜𝑠𝑠 = 1
𝐵

𝐵
∑

𝑖=1
‖𝑋𝑖 −𝑋𝑔𝑡

𝑖 ‖1 (16)

Let 𝐵 represent the batch size, and 𝑖 represent the index of each 
image within the batch. 𝑋𝑖denotes the image generated by the model 
after super-resolution, while 𝑋𝑔𝑡

𝑖  denotes the ground truth image.

The model is implemented in PyTorch and optimized using the Adam 
optimizer. All experiments are conducted on the same machine with the 
following specifications: an i9 - 12900K CPU, 64 GB of RAM, a 3090 
GPU with 24 GB of video memory, and CUDA version 12.6. During the 
training process, data augmentation was applied to enhance the model’s 
generalization ability, and the specific implementation can be referred 
to in works such as SSPSR (Jiang et al., 2020).

4.1.3.  Evaluation metrics
We evaluate the model’s performance in both spatial and spectral 

domains using six widely adopted metrics: peak signal-to-noise ratio 
(PSNR), structural similarity (SSIM), spectral angle mapper (SAM), cross 
correlation (CC), erreur relative globale adimensionnelle de synthese 
(ERGAS), and root mean squared error (RMSE). The optimal values for 
these metrics are as follows: +∞, 1, 0, 1, 0, and 0.

4.2.  Experimental results

We compare our approach against traditional bicubic interpola-
tion and six representative deep learning-based methods: 3DFCNN (Mei 
et al., 2017), GDRRN (Li et al., 2018), MCNet (Li et al., 2020), EUNet 
(Liu et al., 2023), CST (Chen et al., 2024a), and SRDNet (Liu et al., 
2024). All models were trained from scratch. The qualitative and visual 
results across various datasets are presented in Tables 1, 2, and 3 where 
our method consistently outperforms the others in terms of both spatial 
and spectral performance.

4.2.1.  Experimental results on chikusei dataset
The original Chikusei dataset has dimensions of 2517 × 2335 × 128

pixels. To address edge artifacts, we crop the central region, yielding 
a sub-image of size 2304×2048×128 pixels. Following the partitioning 
strategy in SSPSR (Jiang et al., 2020), this sub-image is divided into 
a training set and a testing set. The testing set consists of four non-
overlapping hyperspectral images, each with a size of 512 × 512 × 128
pixels. The remaining region of the sub-image is partitioned into image 
patches with overlapping regions (overlap size being half the patch size), 
which are used as high-resolution reference images during training. LR 
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Table 1 
Quantitative comparison of different methods on the chikusei dataset.

Methods
 Scale=4
 PSNR  SSIM  SAM  CC  ERGAS  RMSE

 Bicubic  37.6377  0.8949  3.4040  0.9212  6.7564  0.0159
 3DFCNN  38.5325  0.9154  3.1786  0.9349  6.0603  0.0141
 GDRRN  39.9446  0.9385  2.5405  0.9524  5.1929  0.0118
 MCNet  39.5699  0.9322  2.7359  0.9483  5.3762  0.0126
 EUNet  39.8675  0.9383  2.4926  0.9515  5.2681  0.0119
 CST 40.1551 0.9422 2.3637 0.9544 5.0711 0.0116
 SRDNet  40.0837  0.9411  2.4274  0.9538  5.1310  0.0117
 Ours  40.6221  0.9474  2.2312  0.9589  4.7978  0.0110

Methods
 Scale=8
 PSNR  SSIM  SAM  CC  ERGAS  RMSE

 Bicubic  34.5051  0.8069  5.0356  0.8313  9.6969  0.0223
 3DFCNN  34.9175  0.8203  4.8227  0.8460  9.2113  0.0213
 GDRRN  35.7307  0.8481  4.1867  0.8731  8.4221  0.0194
 MCNet  35.4367  0.8368  4.4552  0.8643  8.6612  0.0201
 EUNet  35.5846  0.8472  4.1237  0.8691  8.5942  0.0196
 CST 35.7359 0.8494  4.1774 0.8738 8.4057 0.0193
 SRDNet  35.6839  0.8490 4.1048  0.8726  8.4818  0.0194
 Ours  35.9645  0.8591  3.8733  0.8802  8.2064  0.0188

Table 2 
Quantitative comparison of different methods on the cave dataset.

Methods
 Scale=4
 PSNR  SSIM  SAM  CC  ERGAS  RMSE

 Bicubic  35.3132  0.9370  4.2665  0.9871  5.3941  0.0198
 3DFCNN  37.0362  0.9487  4.1423  0.9908  4.3914  0.0165
 GDRRN  37.8173  0.9528  3.9974  0.9922  4.0173  0.0150
 MCNet 39.6099  0.9645 3.2556 0.9941 3.4307 0.0126
 EUNet  38.6248  0.9601  3.5656  0.9932  3.6998  0.0138
 CST  38.8304  0.9608  3.3091  0.9935  3.6326  0.0136
 SRDNet  39.1078 0.9615  3.4591  0.9936  3.5477  0.0131
 Ours  40.1128  0.9645  3.1788  0.9943  3.2782  0.0122

Methods
 Scale=8
 PSNR  SSIM  SAM  CC  ERGAS  RMSE

 Bicubic  30.7284  0.8632  5.9042  0.9672  6.2281  0.0240
 3DFCNN  31.8507  0.8831  5.7864  0.9736  7.6642  0.0289
 GDRRN  32.4870  0.8849  5.8649  0.9758  7.1145  0.0278
 MCNet 34.3306 0.9148  4.6779 0.9814 6.0951 0.0233
 EUNet  33.5809  0.9055  4.9633  0.9793  6.4811  0.0248
 CST  33.7545  0.9072 4.6384  0.9805  6.3193  0.0244
 SRDNet  33.9380  0.9084  4.9519  0.9806  6.2281  0.0240
 Ours  34.5240  0.9157  4.5259  0.9821  5.9550  0.0230

HSI are generated by downsampling these patches and applying bicubic 
interpolation.For the experiments, we test scaling factors of 4× and 8×. 
In the case of the 4× scaling factor, the low-resolution images have an in-
put resolution of 16×16 pixels, with an output resolution of 64×64 pix-
els. For the 8× scaling factor, the input resolution is 16×16 pixels, and 
the output resolution is 128×128 pixels.

Table 1 reports the average objective performance of all compara-
tive algorithms on the test images, with boldface highlighting the best 
results and underscores indicating the second-best results. The perfor-
mance metrics on the Chikusei dataset for both 4× and 8× scaling factors 
demonstrate that our method outperforms all others in both spatial and 
spectral domains, underscoring the effectiveness of jointly extracting 
spatial and spectral features to enhance spectral consistency. Moreover, 
a comparison of 2D and 3D network-based methods reveals that the 
3D approach fails to fully capitalize on its potential to capture spectral 
features, particularly for datasets with a large number of bands. This 
limitation can be attributed to the model’s capacity constraints.

To visually assess the performance of different methods, we con-
ducted a visual evaluation, the results of which are presented in Fig. 4. 
The 3DFCNN method yields results akin to bicubic interpolation, retain-

ing minimal details. In contrast, our method preserves finer details more 
effectively, particularly in the annotated region where a distinct curve 
intersects with a smaller curve. Our approach accurately reconstructs 
this intricate detail, which is missed by other methods, along with other 
subtle features. As a result, our method produces a more natural and 
detailed reconstruction.

4.2.2.  Experimental results on CAVE dataset
To further validate the robustness and effectiveness of the proposed 

method, we conducted comparative experiments on natural scene hy-
perspectral images using the CAVE dataset. This dataset comprises 32 
scene images, each with a resolution of 512×512 pixels and 31 spectral 
bands. We randomly selected 20 images for the training set. Similar to 
the Chikusei dataset, overlapping patches were extracted from the orig-
inal images, which were treated as high-resolution references. These 
patches were then downsampled using bicubic interpolation to gener-
ate low-resolution images. In the experiment, we tested scaling factors 
of 4× and 8×, where the input low-resolution images had resolutions 
of 32×32 and 16×16 pixels, respectively, with output resolutions of 
128×128 pixels for both scaling factors.

The results from the 4× and 8× experiments on the CAVE dataset, 
as presented in Table 2, demonstrate that our method outperforms oth-
ers across spatial metrics. In terms of SSIM, the performance of MCNet 
is similar to ours. MCNet, which combines 2D and 3D convolutions, 
effectively captures local spatial-spectral features; however, it is lim-
ited in its ability to model global dependencies. In contrast, our method 
seamlessly integrates spatial and spectral features through a low-rank 
reconstruction strategy, enabling it to capture the global relationships 
between these features, thereby yielding superior spectral consistency. 
Furthermore, a comparison between 2D- and 3D-based methods reveals 
that 3D networks show an advantage on datasets with fewer spectral 
bands, whereas 2D networks tend to exhibit limitations in this regard. 
This is primarily due to the inability of traditional 2D methods to jointly 
capture spatial and spectral features at the same level of integration as 
3D methods. Our approach, despite being based on 2D convolutions, 
uniquely integrates spatial and spectral information, setting it apart and 
highlighting its distinct advantages in achieving both spatial accuracy 
and spectral consistency.

Figs. 5 and 6 illustrate the visual outcomes of 4× and 8× SR on two 
test samples from the CAVE dataset, comparing results across various 
methods. In Fig. 5, the reconstructed letters within the highlighted re-
gion appear blurred and lack fine details when using other methods, 
whereas our approach accurately restores these details, underscoring its 
effectiveness in reconstructing intricate structures. Despite the inherent 
challenge of 8× SR, Fig. 6 demonstrates that our method successfully 
preserves a significant level of fine detail, further showcasing its robust-
ness and superiority in high-magnification reconstruction tasks.

Moreover, a comparison of the visual results in Fig. 6 with the quan-
titative metrics reported in Table 2 reveals an important insight: while 
MCNet achieves competitive numerical scores, its visual outcomes re-
main suboptimal, lacking fidelity and detail. This inconsistency high-
lights the instability of MCNet in maintaining reconstruction quality 
across varying test scenarios, in contrast to the stability and reliability 
of our proposed method Fig. 7.

Figs. 6 and 8 present the error maps and spectral curves for dif-
ferent methods applied to the same test image, respectively. The error 
maps visualize the discrepancies between the reconstructed image and 
the ground truth, where darker blue regions indicate superior spatial 
reconstruction accuracy. As illustrated in Fig. 6, our method demon-
strates significant advantages in both global reconstruction quality and 
fine detail accuracy. Notably, in the reconstruction of letters, the error 
maps generated by our method exhibit minimal contour discrepancies, 
while competing methods display pronounced contour errors, indicat-
ing greater deviations from the ground truth. These results affirm the 
superior spatial fidelity achieved by our approach.
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Fig. 4. Visualization of a test image from the Chikusei dataset when the upsampling factor is 4, where the spectral band combination of 31-98-61 is displayed as a 
false-color image.

Fig. 5. Visualization of a test image from the CAVE dataset when the upsampling factor is 4, where the spectral band combination of 16-26-6 is displayed as a 
false-color image.

Fig. 6. Visualization of a test sample from the CAVE dataset with an upsampling factor of 8, where the spectral bands 16-26-6 are displayed as a false-color image.
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Fig. 7. Visualization of error maps for various methods on a test sample from the CAVE dataset with an upsampling factor of 4.

Fig. 8 highlights the methods’ performance in preserving spectral 
information. The leftmost panel shows the ground truth, with the 
21st spectral band rendered in grayscale. Two specific pixel locations, 
(132,181) and (132,371), are marked, corresponding to the spectral 
curves on the right. By comparing the error maps in Fig. 6 and the spec-
tral curves in Fig. 8, it is evident that these pixel locations reside in areas 
with higher spatial errors, often associated with regions containing in-
tricate textures. For these pixels, the spectral curves reconstructed by 
other methods deviate significantly from the ground truth, whereas our 
method accurately reproduces the original spectral profiles.

The exceptional performance of our method in both spatial recon-
struction and spectral preservation can be attributed to its effective inte-
gration of spatial and spectral features. The interplay between these two 
domains is critical, as accurate spatial reconstruction directly influences 
spectral consistency, while the retention of spectral integrity enhances 

spatial representation. By seamlessly capturing and fusing spatial and 
spectral features, our method achieves superior outcomes, as evidenced 
by the spectral curves and error maps.

The Chikusei and CAVE test datasets differ significantly in spatial 
resolution, spectral resolution, and the number of bands, providing 
a robust benchmark for evaluating method performance. As summa-
rized in Tables 1 and 2 , our method consistently achieves superior 
results across both datasets, demonstrating its robustness and adapt-
ability. In contrast, other methods exhibit variable performance. For 
instance, CST performs competitively on the Chikusei dataset, rank-
ing second to our method, but shows markedly lower performance on 
the CAVE dataset. This inconsistency likely stems from CST’s indepen-
dent extraction of spatial and spectral features, which, despite captur-
ing long-range dependencies in both domains, fails to integrate them
effectively.

Fig. 8. Comparison of spectral curves at two pixel points from a test sample in the CAVE dataset for various methods with an upsampling factor of 4.
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Fig. 9. Visualization of a test image from the Pavia dataset with an upsampling factor of 2, where the spectral band combination of 51-31-91 is displayed as a 
false-color imag.

Table 3 
Quantitative comparison of different methods on the pavia dataset.

Methods
 Scale=2
 PSNR  SSIM  SAM  CC  ERGAS  RMSE

 Bicubic  33.2946  0.9155  3.9875  0.9549  3.9495  0.0225
 3DFCNN  35.3005  0.9470  3.7107  0.9699  3.1703  0.0180
 GDRRN  36.6871  0.9584  3.3757  0.9766  2.7617  0.0152
 MCNet  36.7451  0.9589  3.3374  0.9770  2.7222  0.0153
 EUNet  36.0794  0.9525  3.5749  0.9737  2.9302  0.0164
 CST 37.8721 0.9667 3.0374 0.9812 2.4552 0.0132
 SRDNet  37.4684  0.9637  3.1217  0.9796  2.5532  0.0140
 Ours  38.6412  0.9704  2.8700  0.9834  2.2766  0.0122

Methods
 Scale=4
 PSNR  SSIM  SAM  CC  ERGAS  RMSE

 Bicubic  28.5279  0.7341  5.6917  0.8644  6.7753  0.0396
 3DFCNN  29.3110  0.7808  5.4846  0.8849  6.1859  0.0362
 GDRRN  29.9443  0.8112  5.2079  0.9014  5.7671  0.0336
 MCNet  29.7459  0.8001  5.4308  0.8959  5.8807  0.0347
 EUNet  29.6511  0.7984  5.2980  0.8942  5.9497  0.0348
 CST 30.2462 0.8242 5.0222 0.9080 5.5683 0.0324
 SRDNet  29.9707  0.8129  5.0356  0.9016  5.7390  0.0336
 Ours  30.4777  0.8372  4.7163  0.9125  5.4201  0.0316

MCNet, while excelling on the CAVE dataset with its hybrid 2D-
3D convolutional architecture, performs less effectively on the Chiku-
sei dataset. Its focus on local spatial-spectral feature extraction suits 
datasets with fewer bands, such as CAVE, but the absence of global 
dependency modeling hinders its performance on datasets with higher 
spectral complexity, such as Chikusei. These findings underscore the sta-
bility and generalizability of our method, which effectively integrates 
spatial and spectral features to adapt to diverse data characteristics.

4.2.3.  Experimental results on pavia dataset
Due to the absence of information in the central region of the Pavia 

dataset, we cropped this region following the methodology outlined in 
SSPSR (Jiang et al., 2020), resulting in a sub-image of size 1096 × 715 ×
102. This sub-image was subsequently partitioned into training and test 
sets. Specifically, the image was divided into a top and bottom region. 
The bottom region (128 × 715 × 102) was designated for testing, with 
center cropping (Liu et al., 2023) applied to both the left and right sides, 
generating four non-overlapping images, each of size 128 × 128 × 102. 
For the remaining portion of the sub-image, we followed the procedure 
used for training data extraction from the Chikusei dataset. Overlap-
ping patches were extracted from the original image, treated as high-

resolution references, and downsampled using bicubic interpolation to 
generate corresponding low-resolution images. In this experiment, we 
tested scaling factors of 2× and 4×, with the input low-resolution im-
ages having resolutions of 32 × 32 and 16 × 16 pixels, respectively, and 
the output resolutions set to 64 × 64 pixels for both cases.

As shown in Table 3, the proposed method significantly outperforms 
all other approaches across all evaluation metrics. Compared to the 
second-best CST method, our method demonstrates a clear advantage 
at both 2× and 4× magnification. The dataset utilized in this study is 
smaller than the Chikusei and CAVE datasets, and due to the lower res-
olution of the test images, we present visual comparisons of the recon-
structed images for different methods using a single test image (Fig. 9) 
and corresponding error maps to more intuitively highlight performance 
differences. As depicted in Fig. 10, our method is capable of recon-
structing more fine details than the other methods. Furthermore, Fig. 10
reveals that our method produces smaller errors, particularly in the 
bright regions on the right of the error map, indicating superior spa-
tial reconstruction.

To assess spectral preservation, we captured the spectral curves of 
two pixels from the same image (Fig. 11). The results show that the 
spectral curve for the proposed method (red) aligns more closely with 
the ground truth (blue), further validating the efficacy of our approach 
in jointly extracting spatial and spectral features. This demonstrates 
the method’s superiority, particularly on small-scale datasets. Moreover, 
when comparing the performance of different methods on the Chikusei 
and Pavia datasets, it is evident that while 3D convolution-based meth-
ods can extract both spatial and spectral features, their performance is 
constrained by the receptive field and model capacity limitations (Liu 
et al., 2023). These constraints hinder their ability to achieve optimal 
results on datasets with hundreds of spectral bands.

5.  Discussion

5.1.  Ablation study

The LREM module serves as the key component of our framework, 
constructed through a ROM group generated by CP decomposition prin-
ciples. The ROM group integrates four core components: CFRP, ELI, 
DWC, and Bottleneck. To systematically evaluate their impacts, we con-
ducted ablation studies on the constituent modules of the ROM group. 
The quantitative results are summarized in Table 4. In addition, we also 
evaluated the effect of LREM insertion after up-sampling, and the quan-
titative results were summarized in Table 5.
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Fig. 10. Error map of a test image from the Pavia dataset with an upsampling factor of 2.

1) Effectiveness of the CFRP strategy: In the ROM, we retain channel 
information and further adaptively fuse it through the ELI module. 
In contrast, other computer vision tasks often employ global pooling 
to merge channel information for extracting row and column fea-
tures. However, this method is not optimal for hyperspectral images, 
which contain rich channel-specific information. To demonstrate the 
effectiveness of our approach, we replaced the CFRP strategy with 
global pooling, which compresses and retains information only in 
the row and column directions. The experimental performance of 
the corresponding model is shown in rows 3 and 4 of Table 4. The 
results clearly show that the CFRP strategy significantly improves 
the spatial quality and spectral quality of the image. This improve-
ment is attributed to the limitation of global pooling in capturing 
non-local dependencies, which leads to the loss of critical chan-
nel information and adversely affects the extraction of subsequent
features.

2) Effectiveness of the ELI module: In the ROM, the ELI module adap-
tively fuses channel information through 1D large kernel convolu-
tions, thereby enhancing information localization and establishing 
non-local dependencies. This fusion improves the accuracy in cap-
turing overall dependencies. To assess the efficacy of this module, 
we replaced it with a 2D convolution using a 1×1 kernel. The exper-
imental performance of the corresponding model is shown in rows 
4 and 6 of Table 4. The results demonstrate that the ELI module 
significantly enhances the spatial information expression capability, 
underlining its contribution to improved performance.

3) Effectiveness of the DWC module: In the LREM module, the DWC 
module is employed to preserve feature diversity. To assess its ef-
fectiveness, we removed the DWC module. The experimental per-
formance of the corresponding model is shown in rows 1 and 2 of 
Table 4. The results indicate that the DWC module preserves more 
detailed information and mitigates the loss of certain feature com-
ponents associated with low-rank tensor representations, thereby en-
hancing the model’s expressive capability.

4) Effectiveness of the bottleneck module: In the ROM group, the 
Bottleneck module is employed to statistically model channel-wise 

Table 4 
Quantitative metrics of LTRN with/without CFRP, ELI, 
DWC, AND bottleneck.
 CFRP  ELI  DWC  Bottleneck  PSNR  SAM
 5  5  5  5  40.4879  2.3070
 5  5 ✓  5  40.5398  2.2523
 5  5 ✓ ✓  40.5409  2.2501
✓  5 ✓ ✓  40.5777  2.2397
✓ ✓ ✓  5  40.5721  2.2279
✓ ✓ ✓ ✓  40.6053  2.2242

Table 5 
Ablation quantitative metrics of 
inserting the LREM after upsam-
pling.

 Model  PSNR  SAM
 Proposed  40.1128  3.1788
 OPU  39.9324  3.2402

dependencies and exploit low-rank structural information (Yang 
et al., 2024). To assess the efficacy of this module, we replaced it 
with a 2D convolutional layer utilizing a 1×1 kernel. The exper-
imental performance of the corresponding model configurations is 
illustrated in rows 5 and 6 of Table 4. The results demonstrate that 
the Bottleneck module improves both spatial and spectral metrics 
and enhances the model’s representational capacity.

5) Effectiveness of inserting the LREM after upsampling: Progres-
sive upsampling strategies have demonstrated efficacy in various 
studies (Jiang et al., 2020; Liu et al., 2024; Xu et al., 2024). To 
assess the impact of adding the LREM after upsampling, we con-
ducted an experiment in which no operation was performed follow-
ing upsampling. This model is referred to as “OPU” (only progressive
upsampling), with 𝑟=5 and 3 LREMs per stage. We evaluated the 
4× super-resolution performance using the SAM metric on the CAVE 
dataset (see Table 5). The results show a significant decline in the 
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Fig. 11. Spectral curves of two pixels from a test image in the Pavia dataset with an upsampling factor of 2.

Fig. 12. Effects of rank size: (a) Effect on reconstruction results; (b) Effect on complexity and parameters of CP decomposition.

SAM metric upon removal of the LREM after upsampling. The up-
sampling layer primarily performs feature expansion in the spatial 
domain by increasing the spatial resolution of the feature map, facil-
itating the recovery of spatial details. However, it does not substan-
tially enhance the representation of spectral information. By neglect-
ing the refinement and correction of spectral information after up-
sampling, the crucial relationship between spatial and spectral fea-
tures is weakened. This underscores the necessity of joint spatial and 
spectral feature extraction, validating the effectiveness of inserting 
the LREM post-upsampling.

5.2.  Hyperparameter analysis

The main hyperparameters of the proposed LRTENet include the 
number of LREMs (𝑁) and the rank (𝑟) of the ROM in each LREM. 
Given the large number of possible combinations of these parameters, 
we adopted a systematic approach by fixing one hyperparameter and 
examining the effects of varying the other to ensure scientific rigor. Ini-
tially, we investigated the impact of the low-rank tensor rank (𝑟) on the 
performance of the model, with 𝑁 fixed at 3, implying that each stage 
comprises 3 LREMs. We conducted this analysis on both the CAVE and 
Chikusei datasets, exploring a range of values for the rank parameter and 

assessing its influence on reconstruction quality through a series of con-
trolled experiments. Furthermore, we have added two aspects, namely 
the multiplication-accumulation operation (MAC) and the number of 
parameters, to measure the influence of rank size in CP decomposition. 
The results, presented in Fig. 12, indicate that optimal performance is 
achieved when the rank is selected within the range of 3 to 5, and the 
complexity and the number of parameters are also appropriate at this 
time. It can be seen that the size of the 𝑟 has a significant impact on the 
parameters and performance. In future work, we may consider adapting 
the size of the 𝑟, and the size of the 𝑟 in each LREM needs to be further 
explored.

Subsequently, we investigated the impact of the number of LREMs 
(𝑁) on model performance, using both the CAVE and Chikusei datasets, 
while keeping the rank (𝑟) fixed at 5. Specifically, we tested the floating-
point operations (FLOPs), Parameters, PSNR, and SSIM of different mod-
els on 128×128×𝐶-size hyperspectral images, as shown in Table 6. The 
results indicate that increasing 𝑁 enhances the model’s representational 
capability and improves performance, but it also significantly increases 
model complexity. For the Chikusei and CAVE datasets, we observed 
an improvement in reconstruction metrics when 𝑁 was set to 3 com-
pared to 𝑁 = 2, with the most notable enhancement occurring on the 
CAVE dataset. However, for the Chikusei dataset, the improvement was 
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Table 6 
The effect of the number of LREMS on reconstruction results.

𝑁
 Chikusei  CAVE  Complexity
 PSNR  SSIM  PSNR  SSIM  FLOPs  Parameters

 1  40.4887  0.9457  39.5621  0.9625  3.1T  17.7M
 2  40.6054  0.9473  39.9911  0.9642  5.8T  29.5M
 3  40.6221  0.9474  40.1128  0.9645  8.6T  41.9M

Table 7 
Comparison of computational complexity.
 Methods  GPU memory (GB)  FLOPs (G)  PSNR (dB)  SAM
 MCNet  1.5  459.02  29.75  5.4308
 SRDNet  0.9  160.23  29.97  5.0356
 GDRNN  0.4  11.84  29.94  5.2079
 3DFCNN  1.1  8.23  29.31  5.4846
 CST  0.5  39.74  30.25  5.0222
 EUNet  0.6  22.59  29.65  5.2980
 LRTENet (Ours)  0.9  541.33  30.48  4.7163

marginal, suggesting that further experiments with higher values of 𝑁
were unnecessary. Based on these findings, we recommend selecting 𝑁
= 3 as the optimal configuration.

5.3.  Complexity analysis

To further assess the computational complexity, we report both 
FLOPs and GPU memory consumption, and compare our method with 
state-of-the-art approaches. The results are summarized in Table 7. 
As shown, the memory usage of LRTENet is 0.9 GB, which is lower 
than that of MCNet (1.5 GB) and 3DFCNN (1.1 GB), while slightly 
higher than GDRNN (0.4 GB) and CST (0.5 GB). This demonstrates 
that the proposed method delivers superior performance without im-
posing excessive memory overhead. Although our approach involves 
higher FLOPs than most competing methods, it should be emphasized 
that fine-grained spectral modeling in hyperspectral super-resolution in-
herently entails a certain computational cost. Through an efficient fea-
ture extraction design, our method allocates computation strategically 
to the critical stage of spatial–spectral joint optimization, thereby strik-
ing an effective balance between computational investment and per-
formance gain. For example, compared with CST, which requires only 
39.74 GFLOPs, our method introduces a reasonable increase in compu-
tation while achieving a performance improvement to a SAM of 0.3059.

6.  Conclusion

This paper proposed a novel deep low-rank tensor embedded net-
work (LRTENet) for hyperspectral image super-resolution. By leverag-
ing low-rank tensor decomposition, the proposed LRTENet efficiently 
approximates the complex mapping relationships inherent in hyperspec-
tral data, facilitating the seamless fusion of spatial and spectral fea-
tures. Another key innovation lies in the inclusion of the low-rank tensor 
embedding module, which addresses the spectral distortion commonly 
associated with upsampling processes. Comprehensive evaluations on 
multiple benchmark datasets demonstrate that the proposed LRTENet 
consistently outperforms state-of-the-art approaches, achieving superior 
performance in both spatial fidelity and spectral accuracy.
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