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Recent efforts have witnessed significant progress in deep-learning-based hyperspectral image super-resolution
(HSISR). However, most existing methods focus solely on spatial or spectral exploration, while lacks enough
consideration of the intrinsic correlation between these aspects. This oversight limits the potential for collab-
orative optimization, leading to suboptimal feature representations of HSI. Moreover, they mainly engaged in
super-resolve the pixel-wise spatial details, neglecting the vital spectral consistency. To mitigate these issues, this
paper proposed LRTENet, a novel deep low-rank tensor embedding network for HSISR, which effectively bridges
the optimization gap between spatial and spectral features with well-defined low-rank tensor decomposition.
Specially, we introduce a low-rank embedding module (LREM) to extract low-rank dependencies across multiple
directions facilitating a holistic mapping by adaptively integrating these tensors. This enables our model to gen-
erate discriminative spatial-spectral representations for accurate reconstruction. Furthermore, to better preserve
the spectral consistency, we incorporate LREM after upsample operation to progressively refine and correct
spectral distortion. Extensive experiments demonstrate that LRTENet achieves superior spatial reconstruction
and spectral preservation performance, outperforming state-of-the-art methods on various benchmarks, includ-
ing Chikusei, CAVE, and Pavia.

1. Introduction

Hyperspectral imaging can record multiple narrow and continuous
spectral bands in the electromagnetic spectrum, ranging from visible
light to near-infrared and even short-wave infrared. Benefiting from
these unique advantages, hyperspectral images (HSI) provides rich spa-
tial and spectral information and has been widely used in various appli-
cations (Ghamisi et al., 2017), including agriculture (Sahadevan, 2021)
and environmental monitoring (Tan et al., 2020), mineral exploration
(Hajaj et al., 2024), hyperspectral change detection (Zhou et al., 2025),
etc. However, limited by the bandwidth of imaging sensors, HSI often
strike back and forth between spatial and spectral resolution (Loncan
et al., 2015). Generally, to obtain rich spectral information, it is in-
evitable to sacrifice spatial resolution, resulting in high-frequency infor-
mation loss and posing challenges for downstream tasks (Gendy et al.,
2023; Liang et al., 2018; Villa et al., 2013), such as spectral unmixing,
classification, and object detection. Therefore, it is of practical signifi-
cant to increase the spatial resolution of HSI.

* Corresponding author.

HSISR offers a cost-effective alternative to hardware improvements,
and can be broadly categorized into two typical approaches (Wang et al.,
2023b) : single-image hyperspectral super-resolution and fusion-based
hyperspectral super-resolution (Wang & Chen, 2024). Fusion-based
methods enhance spatial resolution by incorporating high-resolution
(HR) panchromatic (PAN) or multispectral images (MSI). Despite re-
covering richer spatial details, they often require laborious alignment
process between HSI and MSI. What’s worse, they suffer from severe
performance drop when misalignment occurs, resulting in training insta-
bility and suboptimal fusion outcomes. In contrast, single-image HSISR
could directly reconstruct HR hyperspectral images from low-resolution
(LR) inputs, offering greater flexibility and practicality for real-world
applications.

Furthermore, these methods can be divided into traditional (Bu et al.,
2024) and deep learning-based approaches (Chen et al., 2023a; Yan
et al., 2025). Traditional models usually rely on hand-craft priors, e.g.,
sparse (Akhtar et al., 2015; Dian et al., 2019; Dong et al., 2016; Xu et al.,
2019) and low-rank (Dian et al., 2018; Wang et al., 2017; Xue et al.,
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2021) priors, to build a mapping between LR and HR HSI. These priors
are often served as regularization terms to constrain the ill-posed recon-
struction process iteratively. However, they are of limited representation
(Ma et al., 2023) and often require substantial computational resources
to tame the optimization instability. In contrast, deep learning-based
methods, propelled by the success of convolutional neural networks,
can directly learn the mapping (Lepcha et al., 2023) from LR to HR HSI
using external training data. These methods excel in capturing the non-
linear relationships between spatial and spectral features, significantly
outperforming traditional SR models. Nevertheless, most deep learning
methods tend to focus solely on recovering pixel-level spatial details, of-
ten neglecting the critical spectral consistency (Hu et al., 2024) of HSIL
Although some recent works achieve both spatial and spectral feature
modeling (Chen et al., 2024a; Liu et al., 2024), they generally optimize
these processes independently, failing to fully exploit the intrinsic cor-
relation between spatial and spectral information. This oversight often
leads to suboptimal reconstruction results. More specifically, spatial fea-
ture learning emphasizes enhancing pixel-wise resolution, while spec-
tral feature learning focuses on restoring spectral bands. The inherent
discrepancy poses significant challenge for joint representation and col-
laborative learning, leading to undesirable spectral inconsistency (Xie
et al., 2024). The research motivation of this paper lies in the fact that
existing deep learning methods in the task of hyperspectral image super-
resolution have difficulties in effectively handling the separation of spa-
tial and spectral information optimization and are unable to fully utilize
the intrinsic correlation between them, resulting in poor reconstruction
performance.

To address this issue, a straightforward solution is to construct a
holistic representation of the spatial and spectral relationships. How-
ever, establishing such a mapping is challenging due to the high-rank
(Chen et al., 2020; Xue et al., 2019; Zhang et al., 2019) nature of HSIL.
In this context, there are at least two key challenges: 1) suboptimal ex-
ploration of high-rank data, and 2) inaccurate spatial-spectral rep-
resentation. More precisely, deep learning-based methods rely heavily
on external data to extract high-rank HSIs, which inevitably compli-
cates the learning process, especially in limited HSI data scenarios. Ad-
ditionally, there is a lack of efficient scheme for modeling joint low-rank
spatial and spectral dependencies. Based on these analyses, a natural
question arises: can we develop a model-driven spatial-spectral collabora-
tive representation framework to enhance the reconstruction performance of
data-driven networks?

To answer this question, inspired by the tensor decomposition the-
ory (Kolda & Bader, 2009), this paper proposed to decompose the high-
dimensional HSI into multiple low-rank parts for efficient yet effec-
tive spatial-spectral representation. Recently, tensor regularization and
canonical polyadic (CP) (Kolda & Bader, 2009) decomposition have
demonstrated favorable advantages in representing high-rank data with
multiple rank-one low-rank tensors. Based on this, we design a deep
low-rank tensor embedding network (LRTENet) for HSISR, which effec-
tively extracts the holistic spatial and spectral representation through
the low-rank reconstruction method, thus improving the efficiency and
accuracy of spatial-spectral information exploration for high-quality re-
construction.

Specifically, we extract multiple low-rank dependencies from the en-
tire contextual HSI to facilitate the learning of the holistic mapping re-
lationship. To achieve this, we develop a low-rank embedding module
(LREM), which extracts discriminative rank-one tensors and constructs
the mapping through a weighted fusion of these tensors. In LREM, a
rank-one tensor generation module (ROM) was devised, which gener-
ates rank-one tensors by extracting features in multiple directions and
enhancing contextual information from both spatial and channel dimen-
sions. To further retain and utilize rich spectral features, ROM intro-
duces the channel feature retention pooling (CFRP) strategy and em-
ploys the enhanced localization information (ELI) module for adaptively
fusing channel features and acquiring high-quality spatial information.
Furthermore, unlike conventional approaches that perform one-step up-
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sampling directly, we integrate the LREM after multi-step upsampling to
refine and correct spectral information, further alleviating the spectral
distortion.

To sum up, the contributions of this paper are summarized as follows.

¢ This paper proposes a deep low-rank tensor embedding network for
HSISR. The network decomposes the holistic relationship between
spatial and spectral representations into multiple low-rank compo-
nents through the CP decomposition theory, enabling accurate ex-
pression of complex relationships and thus bridging the optimization
gap between spatial and spectral representations.

e To generate discriminative low-rank tensors, we design a rank-one
tensor generation module (ROM) that constructs low-rank dependen-
cies across multiple dimensions. This module adaptively fuses multi-
channel features through attention mechanisms, enhancing the ex-
traction of high-quality spatial details while preserving spectral
fidelity.

¢ On Chikusei, CAVE, and Pavia datasets, LRTENet outperforms state-
of-the-art HSISR methods in both quantitative and visual evalua-
tions, validating its effectiveness.

2. Related work
2.1. Deep learning-based single hyperspectral image super-resolution

Inspired by the huge success of super-resolution convolutional neural
network (SRCNN) (Dong et al., 2015), deep learning has also demon-
strated remarkable potential for single hyperspectral image super-
resolution (Xue et al., 2024). HSIs are characterized by their rich spec-
tral information, which offers unique opportunities for leveraging both
spatial and spectral features (Zhang et al., 2020, 2024b). Consequently,
researchers are motivated to elaborate the network design to effectively
exploit spatial-spectral features.

The grouped deep recursive residual network (GDRRN) (Li et al.,
2018) employs residual connections and grouped recursive modules
to mitigate redundancies in HSI data, thereby reducing computa-
tional overhead. Similarly, the 3D fully convolutional cascade cetwork
(3DFCCN) (Mei et al., 2017) leverages 3D convolution to extract spa-
tial and spectral context from adjacent channels. However, the inherent
computational burden and parameter-intensive nature of 3D convolu-
tions impose significant limitations, hindering optimal performance. To
alleviate the challenges posed by high spectral dimensionality, SSPSR
(Jiang et al., 2020) incorporates grouped convolutions with shared net-
work parameters and adopts a progressive upsampling strategy. It fur-
ther employs a channel attention mechanism to explore inter-spectral
correlations. In contrast, MCNet (Li et al., 2020) and ERCSR (Li et al.,
2021) combine the strengths of 2D and 3D convolutions, where 2D con-
volutions effectively capture spatial features and 3D convolutions are
utilized for local spectral feature extraction, resulting in reduced com-
putational complexity. Nonetheless, theirs feature extraction capability
is constrained by the limited receptive field inherent to convolutions.
Building upon SSPSR (Jiang et al., 2020), CLSCNet (Xu et al., 2024) in-
tegrates ConvLSTM-based (Shi et al., 2015) skip connections to suppress
redundant features, while its convolutional modules enhance edge fea-
ture extraction, thereby achieving improved super-resolution accuracy.
More recently, with the advent of vision transformers, which excel in
capturing long-range dependencies, Chen et al. proposed MSDformer
(Chen et al., 2023b). This hybrid framework employs CNNs to extract
spatial features while leveraging a global spectral transformer to model
dependencies across all spectral bands, overcoming the limitations of
CNNs in capturing global context. SRDNet (Liu et al., 2024) and CST
(Chen et al., 2024a) extend this concept by introducing independent
transformers for spatial and spectral dimensions to explicitly capture
long-range dependencies within each domain. EigenSR (Su et al., 2025)
utilizes pre-trained RGB models to address the issue of data scarcity
in HSI. This method is based on spatial-spectral decoupling and can
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effectively utilize the pre-trained model while maintaining spectral fi-
delity. DSDCN (Muhammad et al., 2025) is designed as a lightweight
depthwise separable dilated convolutional network. It combines depth-
wise separable convolutions, residual connections, and dilated convolu-
tion fusion to improve spatial resolution.

2.2. Low-rank tensor representation

Low-rank tensor representations have found widespread applications
in computer vision tasks due to their ability to efficiently reduce dimen-
sionality and extract meaningful features.

In work (Zhang et al., 2023b), the unsupervised denoising of HSIs
based on tensor decomposition for mining spectral low-rank priors
(Zhang et al., 2022) and using deep space priors is proposed. In work
(Chen et al., 2024b), a denoising and recovery algorithm is proposed to
mine image prior information by constructing low-rank tensor through
deep learning and the synergistic effect of model-based framework. In
work (Zhang et al., 2021a), low-rank tensor singular value decomposi-
tion and tensor product are used to excavate the structural properties of
multi-temporal images, and depth priors are combined to remove thick
clouds from time series images. The work (Xue et al., 2021) employs
a novel subspace clustering method with structured sparse low-rank
representation for fusion-based hyperspectral image super-resolution. It
fully considers the spatial and spectral subspace low-rank relationships
among the available HR-MSI, LR-HSI, and the latent HSI. The work (Yan
et al., 2023) employs low-rank property embedding to minimize the im-
pact of spectral variations and uses adaptive non-negative sparse coef-
ficients derived from the corresponding HR-MSI to further reconstruct
the desired HSI, thereby achieving spectral super-resolution.

By leveraging tensor decomposition theories, high-dimensional ten-
sors can be expressed as combinations of multiple low-rank sub-tensors,
facilitating the representation of the most salient data components while
suppressing redundancy. The core principle of tensor decomposition lies
in breaking down the original tensor into smaller, more manageable
components. Among the popular decomposition techniques, tucker de-
composition represents a tensor as the product of multiple matrices and
a core tensor, capturing its key structures. On the other hand, CP de-
composition expresses a tensor as the sum of a set of rank one tensors,
serving as a specific case of tucker decomposition. CP decomposition
is particularly advantageous in scenarios requiring compact representa-
tions of high-dimensional data.

In work (Chen et al., 2020), a network based on CP decomposition
to mine context features is proposed for semantic segmentation. In work
(Zhang et al., 2021b), a tensor-low-rank prior learning network is pro-
posed for snapshot hyperspectral imaging based on CP decomposition
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and generation of discriminative rank tensor. In work (Dian et al., 2024),
multidimensionwise multihead self-attention is introduced in generating
basis vectors to improve the ability of CP decomposition to convey infor-
mation, and a spectral super-resolution network based on deep low-rank
tensor representation is designed.

Building on these approaches, we are motivated to explore the po-
tential of low-rank tensor representations in the domain of hyperspectral
super-resolution. In this paper, we employ the CP decomposition frame-
work to effectively approximate the complex mapping relationships by
capturing a global set of rank-one tensors, thus enhancing the resolution
of hyperspectral images.

3. Methodology
3.1. Overview

As illustrated in Fig. 1, the proposed LRTENet consists of three major
components: shallow feature extraction module, deep feature extraction
(DF) module, reconstruction module.Given a predefined scaling factor
s and low-resolution HSI I, , € RE**® 1RTENet is designed to learn
the mapping function Fjgrgnec(+), to produce the high-resolution HSI
Igg € ROXsmXsw This process can be mathematically formulated as:

Isr = FirtEnet(ILR: 5) €y
where h,w, and C represent the height, width, and the number of spec-
tral bands of the HSI, respectively. The overall model flow is detailed as
follows.

The low-resolution HSI I,  is first processed through a shallow fea-
ture extraction layer, represented by Fiyiraction(*), Which is a convolu-
tional operation. The resulting feature x, is computed as:

xo = Fextraction({LR) )

The extracted shallow features x,, are then sent through a cascade of
LREM in the deep feature extraction function Fpg(-), resulting in deeper
feature representations:

x, = Fpp(xg) 3

The high-resolution HSI I is reconstructed by combining the deep
features x, and the upsampled shallow features x 1 through the recon-
struction module Fpeconstruction(*) - This process allows for the integration
of both deep and shallow information for better reconstruction.

Isr = Freconstruction(Xu» X0 1) C)]

Here, x 1 refers to the upsampled shallow features obtained via the
pixel shuffle layer. The reconstruction module consists of two convo-
lutional layers, aiming to unifying the channel number of x, and x, 1,

Extraction

Norm

A X L A X fL ..,A,x*
D >

El ise Additi El ise Sub i El ise Multiplicati FN
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Fig. 1. Overview of the proposed LRTENet. (1) Shallow feature extraction module: This stage extracts the initial features from the input data. (2) Deep feature
extraction module: This part consists of a cascade of LREM modules.LREM decomposes complex mappings into r low-rank mappings through the CP decomposition
theory. The low-rank mappings are extracted by the ROM, fused by adding them with adaptive weights, and the fused features are enhanced by the FFN. Each LREM
is designed to capture the overall mapping relationships of the features, facilitating the seamless integration of spatial and frequency information. (3) Reconstruction

module: This final stage reconstructs the output.
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Fig. 2. Illustration of the third - order tensor CP decomposition, where the symbolic notations correspond to the respective equation symbols.

followed by residual learning to stabilize the optimization process. It
is worth noting that during our experiments, we found that residual
learning methods may vary for different datasets. More specific imple-
mentation details are provided in the experimental section.

3.2. Low-rank embedding module

Our objective is to maintain spectral consistency by jointly modeling
spatial and spectral features. However, capturing such spatial-spectral
mapping presents a significant challenge due to the high-rank nature of
hyperspectral feature representations. This complexity arises from the
high dimensionality of hyperspectral data and is further exacerbated by
the expansion of feature channels during shallow feature extraction. Di-
rectly learning such complex mappings is computationally prohibitive
and tend to reaching suboptimal performance. Inspired by the CP de-
composition theory and recent advancements in tensor reconstruction
(Chen et al., 2020; Zhang et al., 2021b), this study adopts a low-rank
representation strategy to simplify the high-dimensional data modeling
procedure. This approach not only mitigates the challenges of high-rank
tensor learning but also facilitates a more efficient yet effective repre-
sentation of the spatial-spectral correlations.

Before delving into the specific implementation of LREM, we first
present the theoretical formulation of the CP decomposition for a 3rd-
order tensor.

Assume that in the row, column, and spectral directions, there are 3r
vectors v,; € R%,v;,; € R" and v,,; € R“,where i € r and r is the prede-
fined rank. These vectors are the CP decomposition components of the
tensor A € R _The tensor A can then be reconstructed from these
decomposition components as defined by:

,
A= Z AiVe; ® gy @ Uy
i=1

® represents the Kronecker product operatio, and v,;, vy;, and v,,; are
referred to as rank-one Kronecker basis vectors. The expression v,; ®
vy ® v, represents a rank-one tensor. This formula indicates that a 3rd-
order high-rank tensor can be expressed as a weighted sum of several
low-rank tensors. 4; is the weight factor for each rank-one tensor. This
process is illustrated in Fig. 2, where the gray-blue color represents the
weights, the vertical orange vector represents vy, the horizontal orange
vector represents v,,;, and the yellow vector represents v,;.

Based on the CP decomposition representation of third-order tensors
mentioned above, high-rank tensors can be effectively approximated as
a combination of multiple rank-one low-rank tensors. To leverage this
property, we designed the LREM.

As illustrated in Fig. 1 and implementation details provided in
Algorithm 1, the LREM comprises three components: feature normal-
ization, low-rank feature reconstruction, and feature enhancement.

)

1) Feature normalization: This stage aims employing normalization
(Zhang et al., 2025) layers to accelerate the optimization process
(Wang et al., 2024). This operation can be mathematically expressed
as:

(6)

Xnorm = FNorm(Xinput)

Algorithm 1 Implementation of low-rank embedded modules.

Require: Input tensor Xinput

1

: Hyperparameter r = 5 (number of low-rank tensors)

Ensure: Output tensor Xoutput

2: Feature normalization:
3 Xnorm < FNorm(xinput)
4: Low-rank feature reconstruction:
5: Initialize i = 1, x, = 0, mid, = x,,,,,,, midy =0
6: fori=1-rdo
7: mid; < mid, — mid,
8: mid, < Frowm, (mid,) > From: Rank-one Tensor Generation
Module
9: X, < X, + 4; -mid, > A;: learnable weight
10: end for
11: Feature enhancement:
12: x, < X, O Xporm + Fpwe(*norm) > Fpwe: Depthwise Convolution
13: Xoupur < Fren(Concat(Xinpyue X)) + Xinpue > Fppy: Feed-Forward
Network
14: return xquue
where Fy,, refers to layer normalization. x,,,,, represents the input
features of the LREM. The output features after normalization are
denoted as x,,,,,-
2) Low-rank feature extraction: the high-rank mapping is decom-

posed into r low-rank subproblems. This approach learns the low-
rank dependencies between joint spatial and spectral features and
aggregates them with adaptive weights to reconstruct the high-rank
mapping. Each of these r low-rank subproblems is addressed us-
ing rank-one tensor generation modules (ROM). The ROM extracts
contextual information, incorporating both channel and spatial di-
mensions, to construct rank-one tensors a;. Additionally, residual
learning is employed within ROM to enhance the discriminability of
individual rank-one tensors (Zhang et al., 2021b), ensuring that each
tensor captures unique and significant features. The rank-one ten-
sors are subsequently aggregated using learnable (Chen et al., 2020;
Xiao et al., 2025b) parameters 4;, allowing the model to reconstruct
the target tensor with discriminative capability. This method, lever-
aging learnable parameters for aggregation, surpasses traditional
convolution-based aggregation methods (Dian et al., 2024; Zhang
et al., 2021b) by facilitating the exploration of richer rank-based fea-
tures. The process is mathematically expressed as:

a; = FROM,- (xnorm -

)
r—1
X, = Z Aa;
i=0

Eq. (7) describes the construction of discriminative rank-one ten-
sors within the ROM, which extracts low-rank features by lever-
aging contextual spatial and spectral information. This process en-
hances the model’s ability to capture unique and diverse feature

i-1

Z"j

Jj=0

(7)

(®
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representations. Eq. (8) demonstrates the aggregation and mapping
relationship for reconstructing the target tensor, where the learn-
able parameters dynamically adjust the contribution of each rank-
one tensor to the final representation.

3) Feature enhancement: This component focuses on generating the
holistic representations and refining them through a feedforward
network (FFN). Specifically, the joint spatial and channel features are
obtained by performing element-wise multiplication between the x,
and the initial input features. Considering that low-rank tensor rep-
resentations may inherently discard some feature components, we
draw inspiration from existing approaches (Han et al., 2024), and
integrate depthwise convolution (DWC) modules. The DWC modules
are utilized to preserve feature diversity and recover missing compo-
nents effectively. The process can be expressed mathematically as:

xg =X 0} xinput + FDWC(xinput) (9)

FFN plays a pivotal role in enhancing feature representation (Chen
et al., 2025; Han et al., 2024; Neupane et al., 2024; Zhang et al., 2023a;
Zhou et al., 2024; Zhu & Liu, 2025). The architecture of the FFN is shown
in Fig. 1. It consists of three parts: pointwise convolution (PWC), a 3x3
convolution, and leaky rectified linear unit (LReLU) activation. The fea-
tures from the overall mapping are concatenated along the channel di-
mension with the input features of the LREM. This combined feature
is subsequently passed through the FFN, allowing the network to adap-
tively refine and enhance the extracted features. Additionally, a skip
connection is employed to directly link the input of the LREM to its out-
put, facilitating efficient reconstruction and making it easier to retain
valuable information during the SR process. This process can be mathe-
matically expressed as:

Xoutput = FFFN(FCat (Xinput’ xg)) + Xinput 10

where x, denotes the joint spatial-spectral features extracted by the
LREM. Cat refers to the concatenation operation,x,,,, is the output fea-
ture of the LREM.

Most existing networks employ upsampling layers that primarily tar-
get the spatial dimension, while largely overlooking the intricate inter-
dependencies between spatial and spectral information in hyperspectral
images. This limitation often compromises spectral consistency during
reconstruction. To address this challenge, we incorporate multi-layer
LREMs following the upsampling process. These modules are specifi-
cally designed to iteratively refine the spatial-spectral representations
at the target resolution, thereby enhancing the spectral fidelity.

The deep feature extraction phase is composed of two sequential
stages, which collaboratively process features to yield x,,.

The first stage is the upsampling phase, which employs a progressive
upsampling strategy designed to decompose the one-step reconstruction
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into incremental steps, mitigating the difficulties of high-resolution fea-
ture reconstruction. Following upsampling, features at the target spa-
tial resolution are further refined to enhance spectral consistency. This
phase corrects and adjusts the spectral representations using stacked
LREMs. The pixel shuffle layer is utilized within the upsampling layers
for efficient upscale, while LREMs are applied iteratively to extract and
refine deep features.

x, = Fgc(Fyp(xp)) a1

where Fp represents the upsampling phase, which adopts a progressive
upsampling strategy and thus includes two sub-stages of feature extrac-
tion. Fyc refers to the refinement and correction of spectral information,
where the pixel shuffle method is applied in the upsampling layer. Deep
features are extracted using LREM at each stage.

3.3. Rank-one tensor generation module

As shown in Fig. 3, ROM draws inspiration from prior works (Chen
et al., 2020; Xiao et al., 2025b). We adopted a compromise method,
which retained the channel information of the basis vectors on the ba-
sis of obtaining the basis vectors by global pooling in priorworks (Chen
et al., 2020; Xiao et al., 2025b). Specifically, we transform the 3D fea-
ture into a low-dimensional feature representation and construct the de-
composition framework of the ROM. Unlike existing approaches (Chen
et al., 2020; Xiao et al., 2025b), which primarily utilize global pool-
ing (Zhang et al., 2024a; Zhao et al., 2017) to extract coarse contextual
information, our ROM considers the detailed extraction of row and col-
umn features, critical for hyperspectral image data that contains abun-
dant spectral information. To address the limitations of global pooling
in hyperspectral image processing, we adopt a channel-preserving pool-
ing strategy. This method ensures that while global contextual features
(Fang et al., 2024) are extracted through pooling operations for row and
column dimensions, the spectral information, pivotal for hyperspectral
image, can be carefully preserved. This dual focus on spatial and spec-
tral information ensures robust feature extraction, specifically for HSISR
tasks. The process of globally capturing features in different directions
through channel-preserving pooling can be expressed as follows:

Xes Xps Xyp = FCFRP(xinput) (12)

Eq. (12) represents the process of globally capturing features in different
directions through channel-preserving pooling. And this process can be
demonstrated by the operation of CFRP shown in Fig. 3, yielding x, €
RCxlxl’ x, € RC><H’ X, € RCXW.

To further enhance the extraction of spatial features while preserving
channel information, we introduce ELI module. This module adaptively
fuses rich spectral features to extract the row and column basis vectors
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Fig. 3. The proposed rank-one tensor generation module (ROM).
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in the spatial domain, as illustrated by the following equations:

{vh = u(o((FeLi(xp))), 13)

v, = u(o(Fgri(x,,))))
where Fy;; represents the ELI module, o(-) denotes sigmoid activation,
and u(-) means adding a tensor dimension to match subsequent calcula-
tions.

The ELI module employs a ConvlD-ReLU-Conv1D architecture, uti-
lizing 1D convolutional kernels with a size of 7 rather than conventional
2D convolutions. This choice is motivated by the computational effi-
ciency of 1D convolutions, which are significantly more lightweight (Shi
et al., 2024). By stacking two large-kernel convolutional layers (Xiao
et al., 2024) and adjusting the number of channels in the hidden layers,
the ELI module progressively aggregates spatial information. This design
effectively captures large-scale spatial features within HSI objects, while
enhancing the interaction and localization capabilities of embedded spa-
tial information. Furthermore, the ELI module facilitates the learning of
pixel-level unique weights, enabling precise feature extraction.

Furthermore, since both row and column features are extracted in the
spatial dimension, ELI serves as a shared (Xu & Wan, 2024) module for
extracting these row and column features. Inspired by the SENet (Hu
et al., 2018) architecture, which extracts channel weights to capture
inter-channel relationships, we employ a Bottleneck structure following
the global pooling operation to derive basis vectors along the channel
dimension. This design reduces the number of channels in the hidden
layers, enabling efficient extraction of channel-specific features (Nandi
et al., 2023; Xiao et al., 2025a). The process can be mathematically
expressed as:

Ve = O-((FBollleneck (xc))) (14)

where Fpeneck denotes the bottleneck (Hu et al.,, 2018; Wang et al.,
2023a) structure, which is specifically implemented as PWC-ReLU-PWC
structure, and o(-) denotes sigmoid activation.

To facilitate the construction of rank-one tensors within the network,
a broadcasting mechanism is employed during the element-wise multi-
plication of tensors. This operation is analogous to the decomposition
outlined in Eq. (5), enabling the generation of rank-one tensors. The
process is defined as:

xoutput = /‘wc O] Up O] Uy (15)

where O denotes the Hadamard product.v, € RE*X! p, € RIXEX1 , e
RIXIXW are the basis tensors obtained through the operations in
Egs. (14) and (13) in different directions. ¢ represents the sigmoid func-
tion used for feature normalization. x,,,,,, is the resulting rank-one ten-
sor.

out pu

4. Experiments
4.1. Datasets and settings

4.1.1. Datasets

The Chikusei (Yokoya & Iwasaki, 2016) dataset was acquired us-
ing the Headwall Hyperspec-VNIR-C imaging sensor, capturing agri-
cultural and urban areas in Chikusei, Ibaraki Prefecture, Japan. The
dataset spans a spectral range of 363-1018 nm across 128 bands, with
a spatial resolution of 2517 x 2335 pixels. The CAVE (Yasuma et al.,
2010) dataset was collected using a cooled CCD camera and comprises
diverse real-world materials and objects. It covers a spectral range of
400-700 nm across 31 spectral bands. Each hyperspectral image has a
spatial resolution of 512 x 512 pixels, and the dataset includes 32 hyper-
spectral scenes.The Pavia' Center dataset was captured using a reflective
optical system imaging spectrometer sensor. After removing water va-
por absorption and noisy bands, the dataset contains 102 spectral bands

1 https://ehu.eus/ccwintco/index.php?title = Hyperspectral Remote_Sensing_
Scenes
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from an original 115. The spatial resolution of the hyperspectral images
is 1096 x 1096 pixels.

4.1.2. Implementation details

1) Model details: Unless explicitly stated, the convolution kernel size
throughout the network is uniformly set to 3 x 3. For specific con-
volution kernel sizes, detailed descriptions are provided within the
text or corresponding figs. The number of feature channels is set to
256. The deep feature extraction process is divided into two stages.
The first stage employs a progressive upsampling strategy, further
subdivided into two sub-stages, followed by a spectral-preserving re-
finement stage. Each stage incorporates three LREMs. The rank (r)
for each ROM is set to 5, while the channel reduction ratio (d) in the
Bottleneck and ELI modules is set to 16. For residual learning, dis-
tinct strategies are adopted based on dataset characteristics: 1) For
the Chikusei and Pavia datasets, a shallow-feature pixel-shuffling up-
sampling approach is utilized, and 2) For the CAVE dataset, bicubic-
interpolated upsampled images of the LR inputs are employed.

2) Training details: For hyperspectral image super-resolution, the loss
function is typically defined using either the /, or the /,. Since the /,
often results in overly smoothed outputs, this paper adopts the /; as
the loss function for the model, defined as:

B
1
Loss = 2 > I1X; = X[l (16)
i=1
Let B represent the batch size, and i represent the index of each
image within the batch. X;denotes the image generated by the model
after super-resolution, while X f’ denotes the ground truth image.

The model is implemented in PyTorch and optimized using the Adam
optimizer. All experiments are conducted on the same machine with the
following specifications: an i9 - 12900K CPU, 64 GB of RAM, a 3090
GPU with 24 GB of video memory, and CUDA version 12.6. During the
training process, data augmentation was applied to enhance the model’s
generalization ability, and the specific implementation can be referred
to in works such as SSPSR (Jiang et al., 2020).

4.1.3. Evaluation metrics

We evaluate the model’s performance in both spatial and spectral
domains using six widely adopted metrics: peak signal-to-noise ratio
(PSNR), structural similarity (SSIM), spectral angle mapper (SAM), cross
correlation (CC), erreur relative globale adimensionnelle de synthese
(ERGAS), and root mean squared error (RMSE). The optimal values for
these metrics are as follows: +0, 1, 0, 1, 0, and 0.

4.2. Experimental results

We compare our approach against traditional bicubic interpola-
tion and six representative deep learning-based methods: 3DFCNN (Mei
et al., 2017), GDRRN (Li et al., 2018), MCNet (Li et al., 2020), EUNet
(Liu et al., 2023), CST (Chen et al., 2024a), and SRDNet (Liu et al.,
2024). All models were trained from scratch. The qualitative and visual
results across various datasets are presented in Tables 1, 2, and 3 where
our method consistently outperforms the others in terms of both spatial
and spectral performance.

4.2.1. Experimental results on chikusei dataset

The original Chikusei dataset has dimensions of 2517 x 2335 x 128
pixels. To address edge artifacts, we crop the central region, yielding
a sub-image of size 2304 x 2048128 pixels. Following the partitioning
strategy in SSPSR (Jiang et al., 2020), this sub-image is divided into
a training set and a testing set. The testing set consists of four non-
overlapping hyperspectral images, each with a size of 512 x 512 x 128
pixels. The remaining region of the sub-image is partitioned into image
patches with overlapping regions (overlap size being half the patch size),
which are used as high-resolution reference images during training. LR
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Table 1
Quantitative comparison of different methods on the chikusei dataset.
Methods Scale=4
PSNR SSIM SAM CC ERGAS RMSE
Bicubic 37.6377 0.8949 3.4040 0.9212 6.7564 0.0159
3DFCNN 38.5325 0.9154 3.1786 0.9349 6.0603 0.0141
GDRRN 39.9446 0.9385 2.5405 0.9524 5.1929 0.0118
MCNet 39.5699 0.9322 2.7359 0.9483 5.3762 0.0126
EUNet 39.8675 0.9383 2.4926 0.9515 5.2681 0.0119
CST 40.1551 0.9422 2.3637 0.9544 5.0711 0.0116
SRDNet 40.0837 0.9411 2.4274 0.9538 5.1310 0.0117
Ours 40.6221 0.9474 2.2312 0.9589 4.7978 0.0110
Methods Scale=8
PSNR SSIM SAM CcC ERGAS RMSE
Bicubic 34.5051 0.8069 5.0356 0.8313 9.6969 0.0223
3DFCNN 34.9175 0.8203 4.8227 0.8460 9.2113 0.0213
GDRRN 35.7307 0.8481 4.1867 0.8731 8.4221 0.0194
MCNet 35.4367 0.8368 4.4552 0.8643 8.6612 0.0201
EUNet 35.5846 0.8472 4.1237 0.8691 8.5942 0.0196
CST 35.7359 0.8494 4.1774 0.8738 8.4057 0.0193
SRDNet 35.6839 0.8490 4.1048 0.8726 8.4818 0.0194
Ours 35.9645 0.8591 3.8733 0.8802 8.2064 0.0188
Table 2
Quantitative comparison of different methods on the cave dataset.
Methods Scale=4
PSNR SSIM SAM CC ERGAS RMSE
Bicubic 35.3132 0.9370 4.2665 0.9871 5.3941 0.0198
3DFCNN 37.0362 0.9487 4.1423 0.9908 4.3914 0.0165
GDRRN 37.8173 0.9528 3.9974 0.9922 4.0173 0.0150
MCNet 39.6099 0.9645 3.2556 0.9941 3.4307 0.0126
EUNet 38.6248 0.9601 3.5656 0.9932 3.6998 0.0138
CST 38.8304 0.9608 3.3091 0.9935 3.6326 0.0136
SRDNet 39.1078 0.9615 3.4591 0.9936 3.5477 0.0131
Ours 40.1128 0.9645 3.1788 0.9943 3.2782 0.0122
Methods Scale=8
PSNR SSIM SAM CC ERGAS RMSE
Bicubic 30.7284 0.8632 5.9042 0.9672 6.2281 0.0240
3DFCNN 31.8507 0.8831 5.7864 0.9736 7.6642 0.0289
GDRRN 32.4870 0.8849 5.8649 0.9758 7.1145 0.0278
MCNet 34.3306 0.9148 4.6779 0.9814 6.0951 0.0233
EUNet 33.5809 0.9055 4.9633 0.9793 6.4811 0.0248
CST 33.7545 0.9072 4.6384 0.9805 6.3193 0.0244
SRDNet 33.9380 0.9084 4.9519 0.9806 6.2281 0.0240
Ours 34.5240 0.9157 4.5259 0.9821 5.9550 0.0230

HSI are generated by downsampling these patches and applying bicubic
interpolation.For the experiments, we test scaling factors of 4x and 8x.
In the case of the 4x scaling factor, the low-resolution images have an in-
put resolution of 16 x 16 pixels, with an output resolution of 64 x 64 pix-
els. For the 8x scaling factor, the input resolution is 16 x 16 pixels, and
the output resolution is 128 x 128 pixels.

Table 1 reports the average objective performance of all compara-
tive algorithms on the test images, with boldface highlighting the best
results and underscores indicating the second-best results. The perfor-
mance metrics on the Chikusei dataset for both 4x and 8x scaling factors
demonstrate that our method outperforms all others in both spatial and
spectral domains, underscoring the effectiveness of jointly extracting
spatial and spectral features to enhance spectral consistency. Moreover,
a comparison of 2D and 3D network-based methods reveals that the
3D approach fails to fully capitalize on its potential to capture spectral
features, particularly for datasets with a large number of bands. This
limitation can be attributed to the model’s capacity constraints.

To visually assess the performance of different methods, we con-
ducted a visual evaluation, the results of which are presented in Fig. 4.
The 3DFCNN method yields results akin to bicubic interpolation, retain-
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ing minimal details. In contrast, our method preserves finer details more
effectively, particularly in the annotated region where a distinct curve
intersects with a smaller curve. Our approach accurately reconstructs
this intricate detail, which is missed by other methods, along with other
subtle features. As a result, our method produces a more natural and
detailed reconstruction.

4.2.2. Experimental results on CAVE dataset

To further validate the robustness and effectiveness of the proposed
method, we conducted comparative experiments on natural scene hy-
perspectral images using the CAVE dataset. This dataset comprises 32
scene images, each with a resolution of 512 x 512 pixels and 31 spectral
bands. We randomly selected 20 images for the training set. Similar to
the Chikusei dataset, overlapping patches were extracted from the orig-
inal images, which were treated as high-resolution references. These
patches were then downsampled using bicubic interpolation to gener-
ate low-resolution images. In the experiment, we tested scaling factors
of 4x and 8x, where the input low-resolution images had resolutions
of 32x 32 and 16 x 16 pixels, respectively, with output resolutions of
128 x 128 pixels for both scaling factors.

The results from the 4x and 8x experiments on the CAVE dataset,
as presented in Table 2, demonstrate that our method outperforms oth-
ers across spatial metrics. In terms of SSIM, the performance of MCNet
is similar to ours. MCNet, which combines 2D and 3D convolutions,
effectively captures local spatial-spectral features; however, it is lim-
ited in its ability to model global dependencies. In contrast, our method
seamlessly integrates spatial and spectral features through a low-rank
reconstruction strategy, enabling it to capture the global relationships
between these features, thereby yielding superior spectral consistency.
Furthermore, a comparison between 2D- and 3D-based methods reveals
that 3D networks show an advantage on datasets with fewer spectral
bands, whereas 2D networks tend to exhibit limitations in this regard.
This is primarily due to the inability of traditional 2D methods to jointly
capture spatial and spectral features at the same level of integration as
3D methods. Our approach, despite being based on 2D convolutions,
uniquely integrates spatial and spectral information, setting it apart and
highlighting its distinct advantages in achieving both spatial accuracy
and spectral consistency.

Figs. 5 and 6 illustrate the visual outcomes of 4x and 8x SR on two
test samples from the CAVE dataset, comparing results across various
methods. In Fig. 5, the reconstructed letters within the highlighted re-
gion appear blurred and lack fine details when using other methods,
whereas our approach accurately restores these details, underscoring its
effectiveness in reconstructing intricate structures. Despite the inherent
challenge of 8x SR, Fig. 6 demonstrates that our method successfully
preserves a significant level of fine detail, further showcasing its robust-
ness and superiority in high-magnification reconstruction tasks.

Moreover, a comparison of the visual results in Fig. 6 with the quan-
titative metrics reported in Table 2 reveals an important insight: while
MCNet achieves competitive numerical scores, its visual outcomes re-
main suboptimal, lacking fidelity and detail. This inconsistency high-
lights the instability of MCNet in maintaining reconstruction quality
across varying test scenarios, in contrast to the stability and reliability
of our proposed method Fig. 7.

Figs. 6 and 8 present the error maps and spectral curves for dif-
ferent methods applied to the same test image, respectively. The error
maps visualize the discrepancies between the reconstructed image and
the ground truth, where darker blue regions indicate superior spatial
reconstruction accuracy. As illustrated in Fig. 6, our method demon-
strates significant advantages in both global reconstruction quality and
fine detail accuracy. Notably, in the reconstruction of letters, the error
maps generated by our method exhibit minimal contour discrepancies,
while competing methods display pronounced contour errors, indicat-
ing greater deviations from the ground truth. These results affirm the
superior spatial fidelity achieved by our approach.
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(a) GT (b) Bicubic (¢) 3DFCNN (d) GDRRN (€) MCNet

(f) EUNet (g) CST (h) SRDNet (i) Proposed

Fig. 4. Visualization of a test image from the Chikusei dataset when the upsampling factor is 4, where the spectral band combination of 31-98-61 is displayed as a
false-color image.
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Fig. 5. Visualization of a test image from the CAVE dataset when the upsampling factor is 4, where the spectral band combination of 16-26-6 is displayed as a
false-color image.

(a) GT (b) Bicubic (c) 3DFCNN (d) GDRRN (e) MCNet

(f) EUNet (g) CST (h) SRDNet (i) Proposed

Fig. 6. Visualization of a test sample from the CAVE dataset with an upsampling factor of 8, where the spectral bands 16-26-6 are displayed as a false-color image.
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(a) Bicubic (b) 3DFCNN

(c) GDRRN (d) MCNet

(e) EUNet (f) CST

(g) SRDNet (h) Proposed
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Fig. 7. Visualization of error maps for various methods on a test sample from the CAVE dataset with an upsampling factor of 4.

Fig. 8 highlights the methods’ performance in preserving spectral
information. The leftmost panel shows the ground truth, with the
21st spectral band rendered in grayscale. Two specific pixel locations,
(132,181) and (132,371), are marked, corresponding to the spectral
curves on the right. By comparing the error maps in Fig. 6 and the spec-
tral curves in Fig. 8, it is evident that these pixel locations reside in areas
with higher spatial errors, often associated with regions containing in-
tricate textures. For these pixels, the spectral curves reconstructed by
other methods deviate significantly from the ground truth, whereas our
method accurately reproduces the original spectral profiles.

The exceptional performance of our method in both spatial recon-
struction and spectral preservation can be attributed to its effective inte-
gration of spatial and spectral features. The interplay between these two
domains is critical, as accurate spatial reconstruction directly influences
spectral consistency, while the retention of spectral integrity enhances

spatial representation. By seamlessly capturing and fusing spatial and
spectral features, our method achieves superior outcomes, as evidenced
by the spectral curves and error maps.

The Chikusei and CAVE test datasets differ significantly in spatial
resolution, spectral resolution, and the number of bands, providing
a robust benchmark for evaluating method performance. As summa-
rized in Tables 1 and 2 , our method consistently achieves superior
results across both datasets, demonstrating its robustness and adapt-
ability. In contrast, other methods exhibit variable performance. For
instance, CST performs competitively on the Chikusei dataset, rank-
ing second to our method, but shows markedly lower performance on
the CAVE dataset. This inconsistency likely stems from CST’s indepen-
dent extraction of spatial and spectral features, which, despite captur-
ing long-range dependencies in both domains, fails to integrate them
effectively.
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Fig. 8. Comparison of spectral curves at two pixel points from a test sample in the CAVE dataset for various methods with an upsampling factor of 4.
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(d) GDRRN (e) MCNet

(h) SRDNet (i) Proposed

Fig. 9. Visualization of a test image from the Pavia dataset with an upsampling factor of 2, where the spectral band combination of 51-31-91 is displayed as a

false-color imag.

Table 3
Quantitative comparison of different methods on the pavia dataset.
Methods Scale=2
PSNR SSIM SAM CC ERGAS RMSE
Bicubic 33.2946 0.9155 3.9875 0.9549 3.9495 0.0225
3DFCNN 35.3005 0.9470 3.7107 0.9699 3.1703 0.0180
GDRRN 36.6871 0.9584 3.3757 0.9766 2.7617 0.0152
MCNet 36.7451 0.9589 3.3374 0.9770 2.7222 0.0153
EUNet 36.0794 0.9525 3.5749 0.9737 2.9302 0.0164
CST 37.8721 0.9667 3.0374 0.9812 2.4552 0.0132
SRDNet 37.4684 0.9637 3.1217 0.9796 2.5532 0.0140
Ours 38.6412 0.9704 2.8700 0.9834 2.2766 0.0122
Methods Scale=4
PSNR SSIM SAM CcC ERGAS RMSE

Bicubic 28.5279 0.7341 5.6917 0.8644 6.7753 0.0396
3DFCNN 29.3110 0.7808 5.4846 0.8849 6.1859 0.0362
GDRRN 29.9443 0.8112 5.2079 0.9014 5.7671 0.0336
MCNet 29.7459 0.8001 5.4308 0.8959 5.8807 0.0347
EUNet 29.6511 0.7984 5.2980 0.8942 5.9497 0.0348
CST 30.2462 0.8242 5.0222 0.9080 5.5683 0.0324
SRDNet 29.9707 0.8129 5.0356 0.9016 5.7390 0.0336
Ours 30.4777 0.8372 4.7163 0.9125 5.4201 0.0316

MCNet, while excelling on the CAVE dataset with its hybrid 2D-
3D convolutional architecture, performs less effectively on the Chiku-
sei dataset. Its focus on local spatial-spectral feature extraction suits
datasets with fewer bands, such as CAVE, but the absence of global
dependency modeling hinders its performance on datasets with higher
spectral complexity, such as Chikusei. These findings underscore the sta-
bility and generalizability of our method, which effectively integrates
spatial and spectral features to adapt to diverse data characteristics.

4.2.3. Experimental results on pavia dataset

Due to the absence of information in the central region of the Pavia
dataset, we cropped this region following the methodology outlined in
SSPSR (Jiang et al., 2020), resulting in a sub-image of size 1096 x 715 x
102. This sub-image was subsequently partitioned into training and test
sets. Specifically, the image was divided into a top and bottom region.
The bottom region (128 x 715 x 102) was designated for testing, with
center cropping (Liu et al., 2023) applied to both the left and right sides,
generating four non-overlapping images, each of size 128 x 128 x 102.
For the remaining portion of the sub-image, we followed the procedure
used for training data extraction from the Chikusei dataset. Overlap-
ping patches were extracted from the original image, treated as high-

10

resolution references, and downsampled using bicubic interpolation to
generate corresponding low-resolution images. In this experiment, we
tested scaling factors of 2x and 4x, with the input low-resolution im-
ages having resolutions of 32 x 32 and 16 x 16 pixels, respectively, and
the output resolutions set to 64 x 64 pixels for both cases.

As shown in Table 3, the proposed method significantly outperforms
all other approaches across all evaluation metrics. Compared to the
second-best CST method, our method demonstrates a clear advantage
at both 2x and 4x magnification. The dataset utilized in this study is
smaller than the Chikusei and CAVE datasets, and due to the lower res-
olution of the test images, we present visual comparisons of the recon-
structed images for different methods using a single test image (Fig. 9)
and corresponding error maps to more intuitively highlight performance
differences. As depicted in Fig. 10, our method is capable of recon-
structing more fine details than the other methods. Furthermore, Fig. 10
reveals that our method produces smaller errors, particularly in the
bright regions on the right of the error map, indicating superior spa-
tial reconstruction.

To assess spectral preservation, we captured the spectral curves of
two pixels from the same image (Fig. 11). The results show that the
spectral curve for the proposed method (red) aligns more closely with
the ground truth (blue), further validating the efficacy of our approach
in jointly extracting spatial and spectral features. This demonstrates
the method’s superiority, particularly on small-scale datasets. Moreover,
when comparing the performance of different methods on the Chikusei
and Pavia datasets, it is evident that while 3D convolution-based meth-
ods can extract both spatial and spectral features, their performance is
constrained by the receptive field and model capacity limitations (Liu
et al., 2023). These constraints hinder their ability to achieve optimal
results on datasets with hundreds of spectral bands.

5. Discussion
5.1. Ablation study

The LREM module serves as the key component of our framework,
constructed through a ROM group generated by CP decomposition prin-
ciples. The ROM group integrates four core components: CFRP, ELI,
DWC, and Bottleneck. To systematically evaluate their impacts, we con-
ducted ablation studies on the constituent modules of the ROM group.
The quantitative results are summarized in Table 4. In addition, we also
evaluated the effect of LREM insertion after up-sampling, and the quan-
titative results were summarized in Table 5.
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Fig. 10. Error map of a test image from the Pavia dataset with an upsampling factor of 2.

1) Effectiveness of the CFRP strategy: In the ROM, we retain channel
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information and further adaptively fuse it through the ELI module.
In contrast, other computer vision tasks often employ global pooling
to merge channel information for extracting row and column fea-
tures. However, this method is not optimal for hyperspectral images,
which contain rich channel-specific information. To demonstrate the
effectiveness of our approach, we replaced the CFRP strategy with
global pooling, which compresses and retains information only in
the row and column directions. The experimental performance of
the corresponding model is shown in rows 3 and 4 of Table 4. The
results clearly show that the CFRP strategy significantly improves
the spatial quality and spectral quality of the image. This improve-
ment is attributed to the limitation of global pooling in capturing
non-local dependencies, which leads to the loss of critical chan-
nel information and adversely affects the extraction of subsequent
features.

Effectiveness of the ELI module: In the ROM, the ELI module adap-
tively fuses channel information through 1D large kernel convolu-
tions, thereby enhancing information localization and establishing
non-local dependencies. This fusion improves the accuracy in cap-
turing overall dependencies. To assess the efficacy of this module,
we replaced it with a 2D convolution using a 1 x 1 kernel. The exper-
imental performance of the corresponding model is shown in rows
4 and 6 of Table 4. The results demonstrate that the ELI module
significantly enhances the spatial information expression capability,
underlining its contribution to improved performance.
Effectiveness of the DWC module: In the LREM module, the DWC
module is employed to preserve feature diversity. To assess its ef-
fectiveness, we removed the DWC module. The experimental per-
formance of the corresponding model is shown in rows 1 and 2 of
Table 4. The results indicate that the DWC module preserves more
detailed information and mitigates the loss of certain feature com-
ponents associated with low-rank tensor representations, thereby en-
hancing the model’s expressive capability.

Effectiveness of the bottleneck module: In the ROM group, the
Bottleneck module is employed to statistically model channel-wise
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Table 4
Quantitative metrics of LTRN with/without CFRP, ELI,
DWC, AND bottleneck.

CFRP ELI DWC  Bottleneck  PSNR SAM

X X X X 40.4879 2.3070
X X v/ X 40.5398  2.2523
X X v v 40.5409 2.2501
v X v v 40.5777 2.2397
v/ v/ v X 40.5721  2.2279
v v v v 40.6053 2.2242

Table 5

Ablation quantitative metrics of
inserting the LREM after upsam-

pling.
Model PSNR SAM
Proposed 40.1128 3.1788
OPU 39.9324 3.2402

dependencies and exploit low-rank structural information (Yang
et al., 2024). To assess the efficacy of this module, we replaced it
with a 2D convolutional layer utilizing a 1x1 kernel. The exper-
imental performance of the corresponding model configurations is
illustrated in rows 5 and 6 of Table 4. The results demonstrate that
the Bottleneck module improves both spatial and spectral metrics
and enhances the model’s representational capacity.

Effectiveness of inserting the LREM after upsampling: Progres-
sive upsampling strategies have demonstrated efficacy in various
studies (Jiang et al., 2020; Liu et al., 2024; Xu et al., 2024). To
assess the impact of adding the LREM after upsampling, we con-
ducted an experiment in which no operation was performed follow-
ing upsampling. This model is referred to as “OPU” (only progressive
upsampling), with r=5 and 3 LREMs per stage. We evaluated the
4x super-resolution performance using the SAM metric on the CAVE
dataset (see Table 5). The results show a significant decline in the
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Fig. 12. Effects of rank size: (a) Effect on reconstruction results; (b) Effect on complexity and parameters of CP decomposition.

SAM metric upon removal of the LREM after upsampling. The up-
sampling layer primarily performs feature expansion in the spatial
domain by increasing the spatial resolution of the feature map, facil-
itating the recovery of spatial details. However, it does not substan-
tially enhance the representation of spectral information. By neglect-
ing the refinement and correction of spectral information after up-
sampling, the crucial relationship between spatial and spectral fea-
tures is weakened. This underscores the necessity of joint spatial and
spectral feature extraction, validating the effectiveness of inserting
the LREM post-upsampling.

5.2. Hyperparameter analysis

The main hyperparameters of the proposed LRTENet include the
number of LREMs (N) and the rank (r) of the ROM in each LREM.
Given the large number of possible combinations of these parameters,
we adopted a systematic approach by fixing one hyperparameter and
examining the effects of varying the other to ensure scientific rigor. Ini-
tially, we investigated the impact of the low-rank tensor rank (r) on the
performance of the model, with N fixed at 3, implying that each stage
comprises 3 LREMs. We conducted this analysis on both the CAVE and
Chikusei datasets, exploring a range of values for the rank parameter and
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assessing its influence on reconstruction quality through a series of con-
trolled experiments. Furthermore, we have added two aspects, namely
the multiplication-accumulation operation (MAC) and the number of
parameters, to measure the influence of rank size in CP decomposition.
The results, presented in Fig. 12, indicate that optimal performance is
achieved when the rank is selected within the range of 3 to 5, and the
complexity and the number of parameters are also appropriate at this
time. It can be seen that the size of the r has a significant impact on the
parameters and performance. In future work, we may consider adapting
the size of the r, and the size of the r in each LREM needs to be further
explored.

Subsequently, we investigated the impact of the number of LREMs
(N) on model performance, using both the CAVE and Chikusei datasets,
while keeping the rank (r) fixed at 5. Specifically, we tested the floating-
point operations (FLOPs), Parameters, PSNR, and SSIM of different mod-
els on 128x128xC-size hyperspectral images, as shown in Table 6. The
results indicate that increasing N enhances the model’s representational
capability and improves performance, but it also significantly increases
model complexity. For the Chikusei and CAVE datasets, we observed
an improvement in reconstruction metrics when N was set to 3 com-
pared to N = 2, with the most notable enhancement occurring on the
CAVE dataset. However, for the Chikusei dataset, the improvement was
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Table 6
The effect of the number of LREMS on reconstruction results.
N Chikusei CAVE Complexity
PSNR SSIM PSNR SSIM FLOPs Parameters
1 40.4887 0.9457 39.5621 0.9625 3.1T 17.7M
2 40.6054 0.9473 39.9911 0.9642 5.8T 29.5M
3 40.6221 0.9474 40.1128 0.9645 8.6T 41.9M
Table 7
Comparison of computational complexity.
Methods GPU memory (GB)  FLOPs(G) PSNR(dB) SAM
MCNet 1.5 459.02 29.75 5.4308
SRDNet 0.9 160.23 29.97 5.0356
GDRNN 0.4 11.84 29.94 5.2079
3DFCNN 1.1 8.23 29.31 5.4846
CST 0.5 39.74 30.25 5.0222
EUNet 0.6 22.59 29.65 5.2980
LRTENet (Ours) 0.9 541.33 30.48 4.7163

marginal, suggesting that further experiments with higher values of N
were unnecessary. Based on these findings, we recommend selecting N
= 3 as the optimal configuration.

5.3. Complexity analysis

To further assess the computational complexity, we report both
FLOPs and GPU memory consumption, and compare our method with
state-of-the-art approaches. The results are summarized in Table 7.
As shown, the memory usage of LRTENet is 0.9 GB, which is lower
than that of MCNet (1.5 GB) and 3DFCNN (1.1 GB), while slightly
higher than GDRNN (0.4 GB) and CST (0.5 GB). This demonstrates
that the proposed method delivers superior performance without im-
posing excessive memory overhead. Although our approach involves
higher FLOPs than most competing methods, it should be emphasized
that fine-grained spectral modeling in hyperspectral super-resolution in-
herently entails a certain computational cost. Through an efficient fea-
ture extraction design, our method allocates computation strategically
to the critical stage of spatial-spectral joint optimization, thereby strik-
ing an effective balance between computational investment and per-
formance gain. For example, compared with CST, which requires only
39.74 GFLOPs, our method introduces a reasonable increase in compu-
tation while achieving a performance improvement to a SAM of 0.3059.

6. Conclusion

This paper proposed a novel deep low-rank tensor embedded net-
work (LRTENet) for hyperspectral image super-resolution. By leverag-
ing low-rank tensor decomposition, the proposed LRTENet efficiently
approximates the complex mapping relationships inherent in hyperspec-
tral data, facilitating the seamless fusion of spatial and spectral fea-
tures. Another key innovation lies in the inclusion of the low-rank tensor
embedding module, which addresses the spectral distortion commonly
associated with upsampling processes. Comprehensive evaluations on
multiple benchmark datasets demonstrate that the proposed LRTENet
consistently outperforms state-of-the-art approaches, achieving superior
performance in both spatial fidelity and spectral accuracy.
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