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SSTNet: Spatial, Spectral, and Texture Aware
Attention Network using Hyperspectral Image for

Corn Variety Identification
Weidong Zhang, Zexu Li, Hai-Han Sun, Qiang Zhang, Peixian Zhuang, and Chongyi Li

Abstract—Currently, most existing methods using hyperspec-
tral image to assist seed identification only consider the spectral
information but ignore the spatial information resulting in
unsatisfactory classification results. To cope with this issue, we
propose a spatial, spectral, and texture-aware attention network
to identify corn varieties, called SSTNet. Specifically, we first
employ 3D convolution to extract the spatial and inter-spectral
features. Subsequently, we utilize 2D convolution to extract the
spatial and texture features. Meanwhile, we embed an attention
mechanism into the 2D convolution module to further refine the
spatial and texture features. The advantageous complementary
properties of 3D and 2D convolutions allow the spatial and
textural features of hyperspectral images to be fully exploited.
Besides, we construct a hyperspectral image dataset including
1200 samples of 10 corn varieties. Experiments on our proposed
dataset demonstrate that our SSTNet outperforms the state-of-
the-art methods for identifying corn varieties.

Index Terms—Hyperspectral image, corn variety, spatial fea-
tures, spectral features, texture features.

I. INTRODUCTION

D IFFERENT varieties of corn seeds adapt to the diverse
needs of the market, but it also poses the risk of mixing

corn varieties. Therefore, variety identification of seeds is of
great value in improving the purity of corn varieties [1, 2].
Unfortunately, the traditional method of identifying the purity
of corn varieties by physicochemical analysis takes a long time
to identify and destroys the seeds, so it has been unable to meet
the urgent needs of modern agriculture [3, 4]. Hyperspectral
imaging as a fast, efficient and nondestructive identification
technique has achieved remarkable results in seed variety
identification [5, 6].

In the early stage, some researchers rely on the characteris-
tics of the spectrum to manually or semi-automatically extract
features and apply them to hyperspectral image classification
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[7–9]. For instance, collaborative sparse regression [10], s-
parse matrix decomposition [11], covariance matrix [12], and
weighted sparse representation [13] were utilized for hand-
crafted features. He et al. [14] proposed a manual feature ex-
traction method based on multi-scale covariance maps to semi-
automatically integrate spatial and spectral features. Zhang et
al. [15] devised a superpixel-guided variable 3-D Gabor phase
coding strategy to exploit the spatial information of the spectra.
However, the richness of hand-crafted features is insufficient
and depends on some priors.

Recently, deep learning has been gradually applied to
image visualization [16], saliency detection [17, 18], image
enhancement [19–22], and semantic segmentation [23, 24]
thanks to the deep network structure and powerful feature
extraction capabilities. For example, Paoletti et al. [25] pro-
posed a residual-based depth pyramid network to increase
the diversity of spatial properties of spectra. Zhang et al.
[26] integrated automatic encoders and classifiers into a two-
branch deep network for end-to-end collaborative learning.
Hu et al. [27] presented a multiobject convolutional neural
network to implement hyperspectral multi-task classification.
Roy et al. [28] proposed a 3-D-2-D CNN model to extract
spatial and spectral features. Yu et al. [29] designed a two-
channel network to exploit global and multiscale features of
the hyperspectral image, which fully uses feature information
at different levels. In short, deep learning has better feature
representation capability compared to traditional methods.
Meanwhile, the effective utilization of spatial and spectral
information of hyperspectral images is the key to the strong
representation capability of the network model.

In this letter, we propose a Spatial, Spectral and Texture-
aware Attention Network using hyperspectral image for corn
variety identification, called SSTNet. We highlight the contri-
butions of this work as follows.
• We first construct a corn seed hyperspectral image dataset

(i.e., CSHID), which includes 1200 samples of 10 vari-
eties. Specifically, each variety consists of 120 samples
with 128 bands. Meanwhile, the raw resolution of each
band is 696 × 520 and the resolution after cropping the
region of interest is 210 × 200. CSHID also promotes
the application of deep learning methods for identifying
hyperspectral images of agricultural seeds to a certain
extent. It also has significant applications and economic
value for breeding and screening different corn grades.

• We propose a 3D spatial and spectral-aware convolution
module, which utilizes 3D convolution to extract the spa-
tial and spectral features of the target spectrum. Besides,
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Fig. 1. Flowchart of our SSTNet method. In our SSTNet, the region of interest is first derived from the input hyperspectral image of corn seed. Subsequently,
the regions of interest of each band of these corn seeds were passed to the 3D spatial and spectral-aware convolution module to capture each band’s spatial
and spectral features. Whereafter, we utilize the 2D spatial and texture-aware attention module to further refine the spatial and texture features to serve the
identification task of corn seeds.

we also propose a 2D spatial and texture-aware attention
module, which extracts the spatial and textural features
of the target spectrum using 2D convolution module with
channel and spatial attention.

This letter introduces the proposed spatial and texture-
aware attention network in Section II. Section III presents the
experimental results and analysis. Section IV summarizes the
conclusions.

II. METHODOLOGY

Fig. 1 presents the flowchart of SSTNet. Our SSTNet
mainly consists of three 3D convolution modules and three 2D
convolution modules with attention mechanism. The resolution
of the hyperspectral image determines the input node of
SSATNet, and the discriminated class determines its output
node. Our SSTNet includes three cascaded 3D convolutional
modules with batch normalization, three cascaded 2D convo-
lutional modules, channel and spatial attention modules, and
three fully connected layers. SSTNet has a total of 163,896
training parameters and ten outputs.

A. 3D Spatial and Spectral Aware Convolution Module

Hyperspectral images need to capture spectral and spatial
information encoded in multiple bands. 3D convolution can
extract both spatial and spectral hierarchical features from hy-
perspectral images, but at the cost of increased computational
complexity. In our work, we use 3D convolution kernels to
generate feature maps on multiple successive bands in the
input layer to obtain features at both spatial and spectral levels.
In the 3D convolution, the activation value of the jth feature
map at the spatial coordinates (x, y, z) of the ith layer is
defined as:

fx,y,zi,j =

LR

(
J(i−1)∑
j=1

Li∑
l=0

Wi∑
w=0

Hi∑
h=0

kl,w,hi,j × f
(x+l)(y+w)(z+h)
(i−1)j + θi,j

)
,

(1)
where L, W , and H represent the layer, width and height,
respectively. l, w, and h represent the indices of the three
dimensions in the convolution process, respectively. LR rep-
resents the LeakyRelu activation function. θi,j denotes the

bias value of the jth feature map of the ith layer. J(i−1)
represents the number of feature maps at layer L − 1. kl,w,hi,j

represents the weight of the convolution kernel connecting the
jth feature image at the spatial coordinates (l, w, h). Subse-
quently, we perform batch normalization for each pixel value
in the 3D convolution module to prevent gradient explosion
or disappearance. Meanwhile, we designed three cascaded 3D
convolution modules to utilize spatial and spectral features
fully.

B. 2D Spatial and Texture-aware Attention Module

2D convolution can be used to capture the texture fea-
tures of an image, which estimates valuable feature maps by
covering all the feature information of the previous layer. In
2D convolution, we complete the 2D convolution operation
by calculating the sum of dot products between data and
kernel. In our work, the kernel spans the input data to cover
the texture features of the entire image. We pass the feature
maps through the LeakyRelu activation function, where the
activation function of the jth feature map at spatial location
(x, y) in the ith layer is mathematically expressed as:

fx,yi,j = LR

J(i−1)∑
j=1

Li∑
l=0

Wi∑
w=0

kl,wi,j × f
(x+l)(y+w)
(i−1)j + θi,j

 , (2)

where the details of LR, J , L, and W refer to Eq. (1), and l
and w are indices in two dimensions during the convolution
process. kl,wi,j represents the weight of the convolution kernel
connecting the jth feature image at the spatial coordinates
(l, w). Subsequently, we embedded a spatial and channel
attention mechanism [30] in the 2D convolution module to
further refine the texture and spatial features. As shown in
Fig 2, it is mainly composed of spatial attention and channel
attention.

Channel attention first compresses the feature map in the
spatial dimension to obtain a one-dimensional vector, which
considers both mean pooling and max pooling. Average
pooling and max pooling are used to aggregate the spatial
information of feature maps and feed it to a shared network.
It produces a channel attention map by compressing the spatial
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Fig. 2. The feature refinement process of the spatial and channel attention
modules.

dimension of the input feature map and summing it element-
wise. Average pooling has feedback for each pixel on the
feature map, while max pooling only has gradient feedback
at the most responsive part of the feature map when perform-
ing gradient backpropagation calculations. In summary, the
channel attention mechanism is mathematically expressed as

Fcam(F) = Sg(MLP(AP(F)) +MLP(MP(F))), (3)

where MLP denotes the multi-layer perceptron, AP denotes
the average pooling, MP denotes the max polling, F denotes
the feature matrix output by the 2D convolution module, and
Sg denotes the Sigmoid activation function.

The spatial attention mechanism compresses the channels
and performs mean pooling and maximum pooling in the
channel dimension. Subsequently, the module merges the
previously extracted feature maps to obtain a two-channel
feature map. The computational process of the spatial attention
mechanism is expressed as:

Fsam(F) = Sg(k7×7([MLP(AP(F));MLP(MP(F)]))), (4)

where k7×7 represents the operation of convolution using the
convolution kernel of 7× 7. For details of other parameters
refer to Eq. (3). In our work, we designed three cascaded 2D
spatial and texture-aware attention modules that can extract
spatial and texture features better.

C. Loss function

In our SSTNet, we use the multi-margin loss (MML) [31]
as the network’s objective optimization loss function. MML
can fully consider the error between the true class and other
classes. For the corn seed data Data(x, y) containing C
samples, x is the neural network’s output, and y is the true
class label. We assume that the number of corn seed classes
is n, then 0 ≤ yn ≤ C − 1. In short, the loss Lossn of the
nth sample in ith class is defined as:

Lossn =
1

C

C−1∑
i=0,i6=yn

max (0,Mar− xn[yn] + xn[i])
η
, (5)

where Mar denotes a variable offset added to the loss,
and [] denotes the maximum rounding operation not greater
than yn [32]. To deal with the issue of sample imbalance

between multiple classes, a weight w controlling each class
is introduced in Eq. (5). Thus, Eq. (5) can be reexpressed as:

Lossn =
1

C

C−1∑
i=0,i6=yn

max (0, w[yn]Mar− xn[yn] + xn[i])
η
.

(6)
Whereafter, the total loss for all classes is defined as:

Lossall =
Loss1 + Loss2 + ...+ LossN

C
, (7)

where N represents the number of total samples, and Lossall
represents the total loss value.

III. EXPERIMENTS AND ANALYSIS

This section mainly introduces the proposed hyperspectral
image dataset of corn seeds, classification results, and ablation
study. Our SSTNet uses the Adam algorithm as the optimizer,
the batch size of the train samples is set to 40, the batch size
of the test samples is set to 16, the Dropout is set to 0.2, the
learning rate is initialized to 10−2, it decays linearly until it
reaches 0 after 250 iterations, and the ratio of training samples
to test samples is set to 4:1.

A. Proposed dataset

We collected a corn seed dataset of 10 varieties from
the Henan region using the SOC 710 portable visible/NIR
imaging spectrometer from Surface Optics. Its spectral range
is 400-1000 nm, the spectral resolution is 4.6875 nm,
the number of bands is 128, the raw image resolution
is 696520 and the resolution after cropping the region
of interest is 210 × 200. The corn varieties we collected
were BaiYu607, BaiYu808, BaiYu818, BaiYu833, BaiYu879,
BaiYu897, BaiYu918, BaiYu8317, BaiYu9284, and Feng-
Da601, respectively. Meanwhile, each corn variety has 120
samples and each sample has 128 spectral bands. Besides, Fig.
3 shows some representative bands of BaiYu607 corn seeds.

B. Identification Results

In this letter, our SSTNet is compared with 8 classification
methods, including machine learning methods: KNN [33],
RFA [34], SGD [35], and FSVM [3]; and deep learning
methods: DPRNet [25], MSDNet [31], HybridNet [28], and
3DCNN [36]. All methods are tested on our proposed dataset,
and the ratio of training samples to test samples is 4:1.
Additionally, we choose the F1-score, Recall, Precision and
Accuracy as quantitative metrics to evaluate the classification
performance of different methods. The higher the metric value,
the better the classification performance of the method.

Table I reports the results of the different methods. From
Table I, it can be observed that FSVM [3] and RFA [34]
exhibit poor classification performance for machine learning
methods; thus their nonlinear modeling ability is weak. KNN
[33] and SGD [35] show better classification performance than
FSVM [3] and RFA [34]. For deep learning methods, DPRNet
[25] and MSDNet [31] achieve unsatisfactory classification
performance because they do not fully consider the spatial
information of the spectrum. Although 3DCNN [36] and
HybridNet [28] demonstrate better classification performance,
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Fig. 3. Some representative spectral bands of BaiYu607 corn seeds. From left to right are (a) 1th spectral band, (b) 10th spectral band, (c) 20th spectral
band, (d) 30th spectral band, (e) 40th spectral band, (f) 50th spectral band, (g) 60th spectral band, (h) 70th spectral band, (i) 80th spectral band, (j) 90th
spectral band, (k) 100th spectral band, and (l) 128th spectral band, respectively.

they are still lower than our SSTNet in various metrics. In
conclusion, our SSTNet fully considers the spatial, spectral,
and texture features of hyperspectral images of corn seeds so
that our model has a good discriminative capability.

TABLE I
IDENTIFICATION RESULTS OF 10 CLASSES OF CORN SEEDS TESTED BY

DIFFERENT METHODS.(OPTIMAL: RED; SUBOPTIMAL: BLUE)

Method F1-Score ↑ Recall ↑ Precision ↑ Accuracy ↑
FSVM [3] 0.9467 0.9417 0.9519 0.9458
KNN [33] 0.9610 0.9583 0.9637 0.9625
SGD [35] 0.9685 0.9663 0.9703 0.9705
RFA [34] 0.9426 0.9417 0.9435 0.9458

DPRNet [37] 0.9484 0.9583 0.9388 0.9583
MSDNet [31] 0.9398 0.9400 0.9396 0.9416
3DCNN [36] 0.9601 0.9576 0.9627 0.9583

HybridNet [28] 0.9621 0.9667 0.9673 0.9708
SSTNet 0.9795 0.9791 0.9800 0.9792

Fig. 4 reports the confusion matrix of SSTNet for the
test samples. From Fig. 4(a), it can be observed that the
identification accuracy of SSTNet for 10 types of corn varieties
is over 90%, and the identification accuracy of 6 types of
corn seeds is 100%. Additionally, Figs. 4(a) and (b) show the
accuracy and loss convergence curves during SSTNet training,
it can be seen that our SSTNet converges quickly before
50 epochs. The SSTNet has better convergence and higher
accuracy when the number of epochs is 150, SSTNet leveled
off after 150 epochs.
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Fig. 4. (a) Confusion matrix of the SSTNet is tested on the proposed
hyperspectral corn seed dataset. (b) Accuracy convergence versus number of
epochs. (c) Loss convergence versus number of epochs.

C. Ablation Study
To prove the effectiveness of each module for our SSTNet

for corn seed identification, we performed ablation studies on

the proposed dataset. Concretely, (1) our SSTNet without 3D
convolution module (-w/o 3DCM), (2) our SSTNet without
batch normaliztion (-w/o BN), (3) our SSTNet without 2D
convolution module (-w/o 2DCM), and (4) our SSTNet with-
out attention module (-w/o AM).

TABLE II
RESULTS OF ABLATION STUDIES OF DIFFERENT MODULES.(OPTIMAL:

RED; SUBOPTIMAL: BLUE)

Method F1-Score ↑ Recall ↑ Precision ↑ Accuracy ↑
-w/o 3DCM 0.8741 0.8541 0.8952 0.8792

-w/o BN 0.9527 0.9458 0.9596 0.9583
-w/o 2DCM 0.9440 0.9417 0.9464 0.9458

-w/o AM 0.9541 0.9416 0.9670 0.9542
SSTNet (full model) 0.9795 0.9791 0.9800 0.9792

Table II exhibitions the F1-Score, Recall, Precision, and
Accuracy scores corresponding to the ablated models, which
can be shown that our SSTNet (Full Model) has the best score
compared with other modules. Additionally, it also proves that
each module has a positive effect on our SSTNet.

D. Running time

All methods are implemented on a Windows 11 PC with
AMD Ryzen 7 3700X 8-Core CPU at 3.6 GHz, 16-GB
Memory, NVIDIA GeForce GTX 1650 Super, Python 3.6,
and Torch-GPU-1.10.1. Table III shows the total running time
of 240 corn seeds tested by different methods. From Table
III, Our SSTNet has the optimal and fast running time. In
general, our method has good identification performance and
high efficiency.

IV. CONCLUSION

The letter proposes an SSTNet for nondestructive identifi-
cation of corn seeds using hyperspectral image. Our SSTNet
fully accounts for the hyperspectral image spatial, spectral
features, and texture features of corn seeds. Besides, the
cooperation between the 3D module, 2D module, and attention
module makes our SSTNet have better discriminative capabil-
ity and robustness. In future work, we will expand the class
and number of corn seeds to validate the performance of our
SSTNet.
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TABLE III
THE TOTAL RUNNING TIME OF DIFFERENT METHODS WERE TESTED ON 240 CORN SEEDS. (IN SECONDS; OPTIMAL: RED; SUBOPTIMAL: BLUE)

FSVM [3] KNN [33] SGD [35] RFA [34] DPRNet [37] MSDNet [31] 3DCNN [36] HybridNet [28] SSTNet
0.032 0.035 0.031 0.032 0.029 0.048 0.197 0.025 0.023
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