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Abstract— Mixed noise pollution severely disturbs hyperspec-
tral image (HSI) processing and applications. Plenty of algo-
rithms have been developed to address this issue via two
strategies: model-driven or data-driven strategy. However, model-
driven methods exist in the highly time-consuming weakness
of iterative optimization and unstable sensitivity of setting
parameters. Data-driven methods usually perform poor due to
the overfitting effects. To solve these issues, we combine both
the deep denoising priors with low-rank tensor factorization
(DP-LRTF) for HSI restoration. The proposed method uses
Tucker tensor factorization to depict the global spectral low-
rank constraint. Then the spectral orthogonal basis and spatial
reduced factor are optimized by two deep denoising priors,
respectively. Through this integrated strategy, we can simul-
taneously exploit the intrinsic low-rank property of HSI, and
utilize the powerful feature extraction ability by deep learning for
HSI restoration. Compared with model-driven and data-driven
methods, DP-LRTF outperforms on HSI mixed noise removal
and execution efficiency for various simulated/real experiments.

Index Terms— Deep denoising priors, hyperspectral image
(HSI), low-tank, restoration, Tucker-1 tensor factorization.

I. INTRODUCTION

DUE to the atmospheric absorption and sensor defects,
hyperspectral image (HSI) inevitably suffers from noise

pollution [1]. The noise types may include Gaussian noise,
stripe noise, impulse noise, and mixed noise. This issue
severely disturbs the application of HSI. Hence, HSI restora-
tion is significant for improving the quality of HSI.

Up to now, plenty of HSI restoration algorithms have been
presented [2]. From the perspective of optimization way, these
approaches could be divided into two types: model-driven
methods and data-driven methods [3]. Detailed descriptions
are depicted as follows.

1) Model-Driven Methods: By establishing the variation
models and defining special constraints, this type of
method can take advantage of the prior information in
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HSI to reduce noise [4]. HSI can be regarded as a three-
order tensor, in which there exist obvious sparsity and
low-rank property. For instance, Zhang et al. [5] trans-
formed the HSI recovery problem to the low-rank matrix
factorization, by unfolding the 3-D spatio-spectral cube
into the 2-D matrix. Zheng et al. [6] built a double-
factor-regularized tensor factorization model, to flexibly
depict the structure of noisy HSI.

2) Data-Driven Methods: Different from model-driven
methods, data-driven methods adopt the deep learning
strategy for HSI restoration. By optimizing trainable
parameters from clean labels, deep learning could effec-
tively extract internal features in HSI. For example,
Yuan et al. [7] introduced the spatio-spectral convo-
lutional neural network (CNN), to learn the nonlinear
map from noisy HSIs to clean HSIs. Furthermore,
Zhang et al. [8] utilized spatial and spectral gradient
network for mixed noise removal in HSI. Wei et al. [9]
developed a quasi-recurrent 3-D CNN for HSI restora-
tion.

In summary, there are pros and cons in the two type
of methods for HSI restoration. Model-driven methods can
accurately depict the inherent characteristics of HSI. How-
ever, these methods are sensitive to the setting parameters,
such as rank value and iteration number [10]. Besides, the
consuming-time of model-based methods usually take too
long, due to the complex iterative optimizations [11]. In terms
of data-driven methods, these methods execute more effi-
ciently due to the data-driven strategy. Nevertheless, the sim-
ulated noise distribution for clean HSI samples is usually
hard to agree with the real noise distribution because of
the complicated imaging procedure [12]. Last but not least,
different hyperspectral sensors have different spectral scopes
and spectral resolution. While data-driven methods usually
perform poor, if the spatial scale and spectral range of training
HSI samples are dissimilar with testing HSIs. These issues
greatly affect the generality of data-driven methods for HSI
restoration.

From the above perspectives, we develop a novel method
for HSI restoration via combining the model-driven with data-
driven strategy. The main contributions are listed as follows.

1) We combine both the deep denoising priors with
low-rank tensor factorization (DP-LRTF) for HSI
restoration. Tucker tensor factorization is employed to
depict the global spectral low-rank constraint.
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Fig. 1. Flowchart of the proposed DP-LRTF model for HSI restoration.

2) DP-LRTF optimizes the spectral orthogonal basis
and spatial reduced factor via two deep denoising
networks, without complex and time-consuming iterative
optimization.

3) DP-LRTF outperforms on mixed noise removal and
execution efficiency for various noisy HSIs (indoor
and outdoor), compared with both model-driven and
data-driven methods.

II. PROPOSED HSI RESTORATION MODEL

A. Problem Formulation

Considering mixed noise as the additive noise elements in
HSI, the general HSI degraded model can be simplified as

Y = X + N + S (1)

where Y ∈ R
w×h×b stands for the acquired noisy HSI.

X denotes the clean HSI. N represents the random-distribution
noise and S refers to the sparse-distribution noise. Apparently,
the solving procedure from Y to X is an ill-posed problem.
Taking the low-rank characteristic in HSI, an extensive HSI
restoration framework could be formulated as

min
X ,S

1

2
‖Y − X − S‖2

F + α · T (X ) + β · ‖S‖1 (2)

where T (·) can be represented as the low-rank tensor factor-
ization (LRTF) model to impose the low-rank prior for HSI.
‖S‖1 constraints the sparsity prior. α and β are the balancing
factors of the two regularization prior terms. In addition, the
global spectral low-rank property in subsapce field could be
denoted as the Tucker decomposition

X = B×3A (3)

where ×k stands for mode-k tensor-matrix product [13].
A ∈ R

b×r (r � b) denotes the spectral orthogonal basis
matrix. B ∈ R

w×h×r represents the spatial reduced factor.
Then the HSI restoration framework in (2) could be rewritten
as

min
A,B,S

1

2
‖Y − B×3A − S‖2

F + α · T (B) + β · ‖S‖1. (4)

Fig. 2. Deep denoising prior Net-A in the proposed DP-LRTF framework.

B. DP-LRTF HSI Restoration Model

Based on (4), the flowchart of the proposed DP-LRTF model
is shown in Fig. 1. The general structure of DP-LRTF can be
divided as two parts: estimating spectral orthogonal basis A
and estimating spatial reduced factor B through two deep
denoising priors, respectively. Details of these two parts are
described below.

1) Estimating Spectral Orthogonal Basis: Before estimating
the spectral orthogonal basis A, we firstly obtain the prelimi-
nary HSI denoising result X̂ via deep denoising prior Net-A

X̂ = b
�
i=1

(X̂i) = b
�
i=1

(Yi − Net-A(Yi ,Ys)) (5)

where �(·) represents the band traversal procedure in Net-A.
Yi stands for the i th band in noisy HSI Y . Ys refers to the
corresponding adjacent spectral gradients of Yi .

As shown in Fig. 2, Net-A fully extracts spatio-spectral
features through eight-layer 2-D convolution layers and ReLU
layers. The final denoising result X̂i and estimating sparse
noise Ŝi are simultaneously exported. In terms of the Net-A’s
optimizing, specific descriptions are accounted in Section II-C.

By reason of the complexity for blended noise distribution,
residual noise especially on spectral dimension in X̂ is obvi-
ously not removed in Fig. 1. This issue is also the limitation
and weakness of deep learning-based methods for HSI restora-
tion. Therefore, to overcome this problem, we introduce the
LRTF strategy to better exploit the low-rank prior of three-
order tensor. As displayed in Fig. 1, the spectral orthogonal
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Fig. 3. Denoising Net-B in the proposed DP-LRTF.

basis A is generated from preliminary HSI denoising result X̂
in (5) by singular value decomposition (SVD)

A = SVDr (X̂(3)), s.t. A�A = I (6)

where X(n) stands for n-order folding format of tensor X .
SVDr (·) denotes the interception result with rank parameter r
under matrix SVD function. We transfer three-order tensor as
a mode-3 matrix and use matrix SVD to calculate A.

2) Estimating Spatial Reduced Factor: After getting the
spectral orthogonal basis A in (6), we utilize another deep
denoising prior to estimating spatial reduced factor B. Firstly,
the initialized factor B̂ is generated as follows:

B̂ = reshapeh,w,r

(
A�X̂(3)

)�
(7)

where reshapen1,n2,n3
(·) function represents the dimension

reshaping operation with the new dimension n1–n3. Depending
on the powerful feature extraction and expression ability of
CNN, Net-B is utilized to eliminate the residual noise in B̂.
As shown in Fig. 3, a 17-layer CNN model is employed for
spatial reduced image B̂ denoising

B = r
�

i=1
(Bi ) = IN

{
r
�

i=1
(N(B̂i ) − Net-B(N(B̂i )))

}
(8)

where N(·) function represents the normalized operation for
each band of B̂. IN(·) function refers to the inverse normalized
operation of N(·). The denoising procedure for factor B̂ obeys
band by band mode through Net-B, as shown in Fig. 3.
In terms of the Net-B’s training and optimizing, specific
descriptions are given in Section II-C.

C. Network Optimization

Taking both the spatial and spectral information into con-
sideration, the loss function ξA of Net-A is defined below

ξA = ξspatial + λ · ξsparse (9)

ξspatial = 1

2ρ

ρ∑
i=1

∥∥Net-A
(
Yi

k,Y i
s

) − (
Yi

k − Xi
k

)∥∥
F

(10)

ξsparse = 1

2ρ

ρ∑
i=1

∥∥∇Net-A
(
Yi

k,Y i
s

) − Si
k

∥∥
1 (11)

where ξspatial denotes the spatial loss term to constrain the
global spatial texture information. ξsparse represents the sparse
loss term to suppress the sparse noise. λ stands for the penalty

TABLE I

EVALUATION INDEXES ON THE SIMULATED W. DC MALL HSI DATASET

coefficient to equilibrate spatial and sparse terms. ρ refers to
the number of HSI training patches. ∇Net-A points to the
sparse gradient output of Net-A. Sk is the simulated additive
sparse noise of kth band in training HSI samples.

For Net-B, we estimate the denoising spatial reduced factor
B from the noisy factor B̂. A deep residual learning strategy is
employed for optimizing this training procedure and the loss
function ξB is determined as follows:

ξB = 1

2μ

μ∑
i=1

∥∥Net-B(B̂i ) − (B̂i − Bi )
∥∥

F
(12)

where μ represents the number of natural image training
patches in Net-B. The whole training procedure of the detailed
parameters, training samples, and related operations in both
Net-A and Net-B can be found in Section III-A.

D. Analysis of Complexity

The computational complexity consists of three steps: low-
rank tensor Tucker factorization, Net-A, and Net-B. The total
complexity is O(whb + wh min wh, r + whr).

III. EXPERIMENTAL RESULTS

A. Network Training

Net-A and Net-B are trained separately in this work.
we employ the Xiongan Matiwan Village HSI [12] as the
training data set. This HSI is captured by aircraft-based
hyperspectral instrument from the wavelength 400–1000 nm.
Both the simulated non-i.i.d. Gaussian noise and stripe noise
are imposed on the clean HSI patches as noisy HSI samples
Net-A. The penalty coefficient λ is fixed as 0.01 in (9). The
number μ of image training patches in loss term (12) is equal
to 160 000. The simulated non-i.i.d. Gaussian noise is imposed
on the clean image patches as noisy image samples for Net-B.

B. Simulated Experiments

To validate the effectiveness of the proposed DP-LRTF
method for HSI restoration, we simulate two cases for both
W. DC Mall and Pavia University HSI data sets.

Case 1 (Gaussian Noise): Every band in the two HSIs
is contaminated by additive Gaussian noise. The variance of
simulated Gaussian noise is equal for each band.

Case 2 (Mixed Noise): Every band in the two HSIs is
contaminated by additive stripe noise, which is simultaneously
contaminated by Gaussian noise in case 1.
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Fig. 4. (Top line) Simulated denoising results (a)–(f) for bands (57, 27, 17) of W. DC Mall HSI dataset in case 2. (Bottom line) Simulated denoising results
(g)–(l) for band 3 of Pavia University HSI dataset in case 1.

Fig. 5. Spectral curves in position (179, 64) of simulated W. DC Mall HSI dataset in case 2. (a) Noisy. (b) LRMR. (c) NGMeet. (d) SSGN. (e) Proposed.

TABLE II

EVALUATION INDEXES ON THE SIMULATED

PAVIA UNIVERSITY HSI DATASET

Besides, four state-of-the-art HSI denoising algorithms
are regarded as the comparisons. These methods include
both model-driven methods: LRMR [5], NGMeet [13] and
FGSLR [14]; data-driven method: SSGN [8].

In terms of the quantitative evaluation indexes for HSI
restoration, mean peak-signal-to-noise-ratio (MPSNR), mean
structural-similarity-index-measure (MSSIM), mean spectral
angle (MSA) and mean running-time (MTime) for each algo-
rithm are given in the two simulated HSI datasets, as listed in
Tables I and II. The optimal index for each case is marked in
bold format.

Tables I and II display the four objective evaluation indexes
of three contrast algorithms, under the two simulated cases.
The top line in Fig. 4 shows the simulated denoising results
(a)–(f) for bands (57, 27, 17) of the W. DC Mall HSI dataset

in case 2. The bottom line in Fig. 4 shows simulated denoising
results (g)–(l) for band 3 of the Pavia University HSI dataset in
case 1. For better comparisons, the enlarged regions for local
details are also given in Fig. 4.

As shown in Tables I and II, the proposed DP-LRTF outper-
forms on MPSNR, MSSIM, and MSAM indexes, compared
with both model-driven methods (LRMR and NGMeet) and
data-driven methods (SSGN). Besides, the consuming time
of the proposed DP-LRTF also performs efficiently compared
with model-driven methods, benefiting from the deep denois-
ing priors. In case 2, the proposed method can simultaneously
remove the mixed noise without obvious residual stripe in
Fig. 4(f). While the other HSI restoration methods exist
spectral distortion (NGMeet) or residual noise in different
degrees (LRMR and SSGN). This also verifies the availability
of the proposed DP-LRTF model for HSI restoration.

In addition, spectral preservation is extremely significant
for HSI restoration. The spectral curves in position (179, 64)
of the simulated W. DC Mall HSI dataset in case 2 are also
depicted in Fig. 5. The proposed method can preserve spectral
information, compared with the other three HSI restoration
methods. This also validates the effectiveness of the global
spectral low-rankness prior through the LRTF framework in
the proposed method.

C. Real Experiments

To further testify the reliability and compatibility of
DP-LRTF, HYDICE Urban and Zhuhai-1 datasets are
employed.
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Fig. 6. (Top line) Real denoising results for bands (187, 104, 24) of Urban HSI dataset. (Bottom line) Real denoising results for band 1 of Zhuhai-1 HSI
dataset. (a) Noisy (Urban). (b) LRMR. (c) NGMeet. (d) SSGN. (e) FGSLR. (f) Proposed. (g) Noisy (Zhuhai-1). (h) LRMR. (i) NGMeet. (j) SSGN. (k) FGSLR.
(l) Proposed.

Fig. 7. Parameter sensitivity analysis of the rank value r for the proposed
method (in case 2). (a) MPSNR. (b) MSA.

As shown in Fig. 6(a)–(f), the denoising results for bands
(187, 104, 24) of the Urban HSI dataset are listed. Especially
for the magnified regions, the proposed method outperforms
on mixed noise removal and spectral information preservation.
While other methods exist obvious residual stripe (LRMR,
SSGN and FGSLR) or spectral distortion (NGMeet), to a
different degree. For the Zhuhai-1 HSI dataset, the proposed
method outperforms random noise removal and spatial details
recovery in Fig. 6(h)–(k). Other methods still contain residual
noise.

D. Parameter Sensitivity

We discussed the variation of key parameters (rank value)
in different data sets. As shown in Fig. 7, although the rank
value varies from 2 to 11, the proposed method also performs
stably for HSI denoising, without large change. Based on com-
bining model-driven with data-driven strategy, the proposed
method manifests the effectiveness to restrain the parameter
sensitivity.

IV. CONCLUSION

In this letter, we combine both the DP-LRTF for HSI
restoration. Tucker tensor factorization is employed to depict
the global spectral low-rank constraint. DP-LRTF respectively
optimizes the spectral orthogonal basis and spatial reduced
factor via two deep denoising networks. Experimental results

show that DP-LRTF outperforms mixed noise removal for HSI
restoration.
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