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Abstract— Due to the powerful feature information mining
ability of deep learning, models such as convolutional neural
network (CNN) and Transformer have gained a certain progress
in hyperspectral image classification (HSIC). Characteristically,
the CNN is good at extracting local information, but it has the
limitation of insufficient receptive field. While the Transformer
has the advantage of global representation, it ignores local details
to some extent. Therefore, this letter proposes an interactive
Transformer and CNN with a multilevel feature fusion network
(ITCNet) for HSIC. Specifically, in the image-based framework,
features with different perceptual fields and depths are extracted
interactively by a multilayer Transformer and CNN, then fused
through a multilevel feature fusion module for class prediction.
Experimental results on two real datasets verify its efficiency,
with improvements over other related methods.

Index Terms— Convolutional neural network (CNN), hyper-
spectral remote sensing, image classification, image-based frame-
work, transformer.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) can obtain spatial and
spectral information about the observed target. They can

better distinguish physical differences between surface materi-
als through broad and dense spectral images relative to natural
images [1]. The characteristics of HSI also benefit applications
such as target detection and classification. HSI classification
(HSIC) takes advantage of the spatial and spectral features
to assign a category label to each pixel. In early research,
HSIC mostly adopted manual feature extraction methods such
as random forest [2], support vector machine (SVM) [3], and
sparse representation [4]. With the massive increase in data and
more complex application scenarios, the traditional methods
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reveal their limitations since their focus is mainly on extracting
shallow features. In recent years, with the improvement of
computer computing power, deep learning-based techniques
have achieved excellent performance in various vision tasks
and gradually become the mainstream of HSIC.

In deep learning, a convolutional neural network (CNN) is
widely used due to its excellent feature extraction capabilities
and transferability. In [5], 1-D-CNN was used to extract the
spectral information of images and classify HSIs directly in
the spectral domain. In [6], 2-D-CNN is used to extract spatial
features while introducing residual learning to deepen the
depth of the network. In [7], a 3-D-CNN is proposed to extract
spatial and spectral features jointly. In [8], the residual network
is improved to capture the spectral and spatial features in an
end-to-end training approach. The CNN-based model has the
unique advantage of feature representation between different
channels and is good at extracting local features. However, its
perceptual field is affected by the size of its convolution kernel
and has a limited ability to extract and represent complex
spatial and global features.

Transformer is a model introduced to computer vision
in recent years from natural language processing. It main-
tains its excellent ability to model the dependencies between
sequence elements. In [9], the proposed SpectralFormer learns
local spectral features from the perspective of sequences.
Although the Transformer-based model has advantages for
global information extraction due to its attention mechanism
and multilayer perceptron (MLP) structure, it also leads to
difficulties in capturing local information [10]. In [11], a con-
volution transformer mixer (CTMixer) is proposed to combine
the advantages of CNN and Transformer.

Both CNN-based and Transformer-based models mentioned
above mainly use a patch-based framework, which divides
pixels and their neighborhoods into patches and feeds the
patches into the model one by one to predict the centers
of the patches. The predicted labels are then aggregated and
reduced to a predicted original image map. However, the
operation of dividing patches also brings some drawbacks. For
example, the size of a patch limits the model’s understanding
of the overall image, and neighboring patches have a large
amount of overlap. This redundant computation grows expo-
nentially as the patch grows, consuming many computational
resources. It also limits the Transformer’s ability for global
feature extraction. In [12], a multilevel codec structure was
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designed using the Transformer based on the image-based
framework, and better performance was obtained, compared
with the patch-based framework, the image-based framework
has higher computational efficiency and more comprehensive
information extraction capability. On one hand, it can process
each pixel in parallel, avoiding the redundant computation
caused by the large number of overlapping patches generated
in the patch-based framework, thus reducing the computational
cost. On the other hand, the image-based framework is not
limited by the Patch size and can extract more comprehensive
global information, thus improving the classification accuracy.

In general, CNN is good at extracting high-frequency infor-
mation, which is better at the local level. At the same time,
Transformer is good at extracting low-frequency information,
which is better at the global level. Under the above conditions,
the issue of reasonably combining the advantages of Trans-
former and CNN to use global and local HSI information
synergistically is essential. Therefore, this letter proposes a
parallel interaction structure between CNN and Transformer to
extract HSI’s local and global information in conjunction with
the image-based framework. The method is named interactive
transformer and CNN with multilevel feature fusion network
(ITCNet), and its contributions are as follows.

1) In the image-based classification framework, the global
features and local features of HSIs are extracted in par-
allel using the Transformer and CNN, which improves
the limitation of traditional patches for the Transformer’s
long-range information extraction capability. It also
enhances the efficiency of training and testing.

2) Integrate the sense field of image-based framework for
complete HSI and the excellent extraction capability of
multilevel feature fusion structure for multiscale features
to achieve end-to-end prediction of complete HSI.

II. PROPOSED CLASSIFICATION FRAMEWORK

A. Framework for Image-Based Classification for HSI

As shown in Fig. 1, an image-based framework is applied in
this section. During the training process, a binary mask of the
same size as the image will first be made, and the positions of a
small number of selected pixel samples with labels will later
be labeled. Thus, the position labeled mask for the training
part will be obtained, while the rest of the labels will not be
involved in the training of the model and hence are used as
a test set. Whereas the HSI will be kept in full size for one
time input to the model for training instead of dividing it again
into separate patches or pixels. The optimization of the model
parameters is achieved by calculating the cross entropy of the
predicted labels and the true labels of the selected pixel points.
In the testing phase, the model classifies the whole image at
the pixel level and outputs the predicted labels of all pixels.

In the patch-based framework, the HSI is divided into fixed-
size patches, which are fed into the model separately for
training. In the inference process, the model will classify each
patch independently to generate the prediction value of the
center pixel of the patch, and then the prediction results will
be arranged to generate the complete image classification.
Compared to image-based, there are mainly the following
differences.

Fig. 1. Image-based framework for HSI.

Fig. 2. GLIE module.

1) In patch-based, the patches involved in training are
relatively independent of each other, and the parameters
of the model only change with the current patch involved
in training, not the whole image. Whereas in image-
based, the model will update the parameters in the
complete image.

2) In the inference stage, the patch-based prediction for
the complete image is divided into two stages, first
generating the prediction values of individual pixels and
then arranging these prediction values to generate the
prediction map. Whereas image-based prediction for an
image is an end-to-end process that directly outputs a
prediction map of the complete image.

In summary, the image-based method is an efficient and
practical framework for HSIC, which can reduce computa-
tional costs while ensuring classification accuracy.

B. Interactive Concurrent Extraction With Global-Local
Feature

CNN has the unique advantage of feature representation
between different channels. It is good at extracting local
features, but its perceptual field is affected by the size of
the convolutional kernel and has limited ability to extract
global features for complex spaces. In contrast, Transformer
can model dependencies between sequence elements and thus
has an advantage in representing global information.

To better utilize the rich spatial and spectral information
in HSIs, a global–local interactive feature extraction (GLIE)
module is designed in this part. As shown in Fig. 2, the module
uses a two-branch parallel extraction strategy. The Transformer
module includes two Layer Norm layers, a multihead attention
(MSA) layer, and an MLP layer. The global representation
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Fig. 3. Schematic of the ITCNet.

capability in the Transformer module is mainly derived from
its designed MSA structure, and its process is represented as
follows:

MultiHead = Concat(H1, H2, . . . , HN )W (1)

where W denotes the weight matrix learned by the model,
Concat denotes concatenation over feature dimensions, H is
the single-headed Self-attention, N represents the number of
heads of self-attention, and MSA consists of multiple self-
attention, where self-attention can be expressed as follows:

H = Attention(Q, K , V ) = SoftMax
(

QK T

√
dk

)
V (2)

where Q, K, and V represent Query, Key, and Value, obtained
by multiplying the input X by three different weight matrices
WQ, Wk, WV . dk is the dimension of the Q and K . And the
convolutional module consists of two 1 × 1 convolutional
layers, one 3 × 3 convolutional layer, and three Instance Norm
layers, which can be expressed as follows:

Xp+1
n = N

(
W2

(
N

(
W1

(
N

(
W0

(
Xp

n

))))))
+ Xp

n (3)

where W0, W1, and W2 represents the convolutional weight
matrix, Xp

n is the pth layer and nth channel input features,
Xp+1

n denotes the processed output features, and N is the
Instance normalization.

The interaction of features between the Transformer and
CNN is done through feature exchange unit (FEU), which
uses 1 × 1 convolutional alignment channels, upsample and
downsample operations to align spatial dimensions. Normal-
ization is accomplished by Layer Normalization and Instan-
ceNorm, the aim is to reduce the difference in scale of the
data between the two branches. To extract features to multi-
ple scales and depths, GLIE designs a multilayer composite
structure and outputs parts of different sizes and numbers of
channels.

C. Interactive Transformer and CNN With Multilevel Feature
Fusion Network (ITCNet)

The overall network structure of the ITCNet is shown in
Fig. 3, which consists of the Stem, GLIE, and the multilevel
feature fusion module (MLF). The Stem part first varies
the number of channels and integrates spectral information
through convolution, InstanceNorm, and ReLu. MaxPooling
then reduces the size of the original image to save computa-
tional resources. Features X and X′ are then fed into the GLIE
for feature extraction. Moreover, four features with different
channels and resolutions are output to MLF at different
network depths.

Afterward, MLF fuses the multiscale features and reflects
them to the classification map of the original image dimensions
to complete the pixel-level prediction. In the MLF fusion pro-
cess, the most miniature size feature map is first aligned with
the spatial size and the number of channels of the previous
layer by an upsampling operation and a convolution layer,
Upsampling is achieved by a bilinear interpolation method.
The features are subsequently feature stitched with those of the
last layer, followed by further feature fusion through two 3 ×

3 convolutional layers and a ReLu layer. The resulting parts are
then subjected to the same operation as the feature map of the
previous layer. After fusion with the features of the uppermost
layer, the resolution is upsampled to the original image size
by a bilinear interpolation method to obtain predicted labels
for all pixels.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Data and Setting

The first dataset is the Indian Pines scene, acquired by
the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS)
sensor over northwest Indiana, United States. It includes
145 × 145 pixels and 200 spectral reflectance bands in the
wavelength range 0.4–2.5 µm with a spatial resolution of
20 m. A total of 16 different feature classes are provided.

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on August 22,2023 at 08:44:18 UTC from IEEE Xplore.  Restrictions apply. 



5507905 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 20, 2023

TABLE I
OVERALL, AVERAGE, K STATISTIC FOR THE INDIAN PINES DATASETS WITH 30 TRAINING SAMPLES PER CLASS. THE HIGHEST ACCURACIES ARE

HIGHLIGHTED IN BOLD

Fig. 4. Classification maps of different tested methods for the AVIRIS Indian Pines scene (30 samples per class).

TABLE II
OVERALL, AVERAGE, K STATISTIC FOR THE PAVIA UNIVERSITY DATASETS WITH 30 TRAINING SAMPLES PER CLASS. THE HIGHEST ACCURACIES ARE

HIGHLIGHTED IN BOLD

TABLE III
TRAINING AND TESTING TIME FOR 100 EPOCH ON THE INDIAN PINES DATASETS

The second dataset is the University of Pavia scene. This
scene was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor during a flight campaign over
Pavia, northern Italy, and includes 610 × 340 pixels and
103 spectral reflection bands in the wavelength range 0.43–
0.86 µm with a spatial resolution of 1.3 m. A total of nine
different feature classes are provided.

The comparative experimental model is (1) SVM with
radial basis function (SVM-RBF) [3], (2) 3-DCNN [7], (3)
spectral-spatial residual network (SSRN) [13], (4) A2S2K-
ResNet [8], (5) double-branch dual attention (DBDA) [14],
(6) CTMixer [11], (7) Unet [15], and (8) multilevel spectral–
spatial transformer network (MSTNet) [12]. Here, (2)–(5) all
use a patch-based framework, while (6) and (7) use an image-
based framework. In the comparison experiments mentioned
above, the hyperparameters were set up with the original paper.
In ITCNet, the learning rate and epoch number are set to
0.0003 and 500, the network was trained using an Adam
optimizer with parameters set as: β1 = 0.9, β2 = 0.999, and

β3 = 10−8. They are all implemented in a PyTorch-based
environment using an Intel Core i7-11700 CPU, 32GB RAM,
and an RTX 3060 12-GB GPU. This letter will construct the
training set by 30 randomly selected pixels per class for each
scene, and the other labeled samples will be used for testing
evaluation.

The overall accuracy (OA), average accuracy (AA), and
Kappa Statistic (κ) were used as evaluation metrics.

B. Results Analysis and Discussion

The classification results of different methods on the Indian
Pine dataset are shown in Table I. The corresponding classi-
fication graphs of other methods on the Indian Pine dataset
are shown in Fig. 4. From the above data, the following
preliminary observations can be summarized.

1) Under the current sample conditions, the well-trained
deep learning-based models are more suitable for
complex scenarios than the SVM-RBF using shallow
feature learning.
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TABLE IV
OVERALL, AVERAGE, K STATISTIC FOR THE IP AND PU DATASETS

WITH 30 TRAINING SAMPLES PER CLASS

2) Compared to the patch-based framework models (3-
DCNN, SSRN, DBDA, and A2S2K-ResNet), the
image-based framework models (Unet, MSTNet, and
ITCNet) improve the OA by more than 3.93%. This
improvement is due to enhancing the receptive field
brought by the image-based framework inputting the
whole image. The image-based framework is more suit-
able than the patch-based framework when utilizing
information at a distance.

3) In the image-based framework, MSTNet only uses the
Transformer structure, and Unet only uses the CNN
structure. There is no significant difference between
MSTNet and Unet in OA, κ , while there is a slight
difference in AA. This may be caused by the different
focus of Transformer and CNN in extracting features,
with MSTNet focusing more on long-range features and
Unet relatively more on local features.

4) ITCNet with CNN and Transformer parallel structure
for feature extraction were 3.02% higher in OA than
MSTNet and 3.16% higher than Unet. This improvement
mainly because ITCNet utilizes both global features
extracted by Transformer and local features extracted by
CNN when extracting features. It reflects that ITCNet
has more advantages over the model using only Trans-
former versus the model using only CNN.

5) The training and testing time of the deep learning-based
methods in this letter is shown in Table II. The
image-based method is more time efficient compared to
the patch-based method because the patch-based creates
a large amount of redundant computation in the overlap-
ping part between patches when dividing the patches.

Table III shows the classification maps and classification
results of different methods on the Pavia University (PU)
dataset, respectively. Compared with other methods, overall
similar conclusions as on the Indian Pine dataset can be
obtained. It is further verified that ITCNet has more global
information, a larger perceptual field than Unet, and more local
details than MSTNet. At the same time, the final multiscale
feature fusion module designed by ITCNet also plays a cor-
responding role, which makes the extracted global and local
information effectively utilized.

C. Ablation Experiments

To verify that the combination of Transformer and CNN
modules in ITCNet is effective, experiments were conducted
by removing the CNN branch in ITCNet (ITCNet-C) and
the Transformer branch (ITCNet-T), respectively. Table IV
shows that when the CNN branch was removed, OA decreased
by 3.27% in IP and 2.57% in PU, respectively. When the

Transformer branch was removed, OA decreased by 2.50%
on the IP dataset and 3.37% on the PU dataset, respectively.
This result shows the different focus of Transformer and CNN
in extracting features. It also confirms that ITCNet forms
an effective collaboration using the components extracted by
Transformer and CNN.

IV. CONCLUSION

This letter proposes an ITCNet. Its main contributions
include using the image-based framework to improve the
global feature extraction capability of the transformer, increas-
ing the perceptual field gap between the CNN and the
transformer, and interacting the features at different scales
for more comprehensive utilization. The classification experi-
ments were conducted on two real hyperspectral datasets. The
experimental results show that the proposed ITCNet yields
better classification performance than other CNN-based and
Transformer-based methods.
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