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Abstract— To mitigate the domain shift and enhance the
alignment of the spatial–spectral features, this letter proposes
a novel dual-intervention-constrained mask-adversary (DICMA)
framework for unsupervised domain adaptation (UDA) of
hyperspectral image classification (HSIC). Innovatively, DICMA
integrates a generator, masker, and bi-classifier within an adver-
sarial framework constrained by a dual intervention mechanism.
Specifically, the correlation intervention module (CIM) ensures
the preservation and independence of causal spatial–spectral
variables, while the knowledge distillation intervention module
completes the spatial–spectral generalization with constrained
distillation information. Besides, with the collaborative adversar-
ial training strategy, the proposed approach transfers effective
knowledge for spatial–spectral feature alignment. Experimental
results and analyses demonstrate the effectiveness of the proposed
DICMA model, which yields an accuracy of 91.15% in the Pavia
University (PaviaU) → Pavia Center (PaviaC). Our code will be
released at https://github.com/Chirsycy/DICMA.

Index Terms— Adversarial training, hyperspectral image clas-
sification (HSIC), unsupervised domain adaptation (UDA).

I. INTRODUCTION

HYPERSPECTRAL image classification (HSIC) assigns
class labels to individual pixels and plays a crucial role in

various fields, such as land cover mapping and environmental
monitoring. With the development of deep learning models,
remote sensing processing approaches have made remarkable
advancements in recent years [1], [2], [3], [4], [5], [6], which
rely on a substantial amount of labeled data for model training.

In recent years, the lack of labeled samples poses a chal-
lenge for the HSIC approach. Unsupervised domain adaptation
(UDA) supplies an effective approach to solve the men-
tioned difficulties, which utilizes knowledge from a labeled
source domain to improve performance on an unlabeled target
domain. For UDA of HSIC, the approaches aim to minimize
distribution discrepancies of different HSI domains [7]. Typi-
cally, generative adversarial networks (GANs) have provided
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a popular pattern to implement feature alignment for domain
adaptation in UDA [8], which implements feature alignment
between source and target domains through an iterative adver-
sarial training process. The UDA for HSIC encounters domain
shifts caused by spectral variation and requires enhancement
in feature alignment. TAADA [9] adopts a two-branch atten-
tion adversarial network, in which the generator extracts the
attention-based spectral–spatial features for domain alignment.
ADA-Net [10] leverages variational autoencoder and dual
classifiers to optimize local class differences with different
HSI domains. CLDA [11] employs confidence learning for
HSIC to enhance classification accuracy. UDACA [12] builds
an adversarial UDA with a presented contentwise alignment
mechanism for HSIC. Although the existing methods have
achieved significant progress, they primarily focus on adver-
sarial framework construction, neglecting the potential benefits
of leveraging causal relationships in improving feature align-
ment and generalization.

In this letter, we develop a dual-intervention-constrained
mask-adversary UDA framework for HSIC denoted as
DICMA. The presented model contains a generator, masker,
and biclassifier within an adversarial framework. Besides, the
dual-intervention mechanism is composed of the correlation
intervention module (CIM) and distillation intervention mod-
ule (DIM), which facilitates sufficient causal and distillation
information to enhance the alignment of the spatial–spectral
features for HSIC. The main contributions of this letter are as
follows.

1) Unlike the generator–discriminator structure in the tra-
ditional GAN-based UDA method, we present a novel
mask-adversary UDA framework for HSIC, which is
structurally integrated with a masker into the adversarial
framework for the first time. Besides, with collaborative
adversarial training of the masker, biclassifier, and gen-
erator, the proposed network enhances the robustness of
the spatial–spectral feature alignment between different
HSIs.

2) Unlike the traditional way of the spatial–spectral fea-
ture alignment, we develop a dual intervention schema
in the mask-adversary framework to constrain the
UDA for HSIC. Specifically, CIM focuses on pre-
serving and maintaining the independence of causal
spatial–spectral variables, and DIM complements the
alignment of spatial–spectral distributions by incorpo-
rating constrained distillation information.
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Fig. 1. Architecture of the proposed DICMA. Structurally, DICMA integrates a generator (G), masker (M), and biclassifier (C1 and C2) within an adversarial
framework constrained by CIM and DIM. CIM enhances the spatial–spectral alignment with the preservation and independence of causal variables, and DIM
decreases domain shift with constrained distillation information.

II. PROPOSED APPROACH

Fig. 1 illustrates the adversarial architecture of DICMA.
Specifically, G is responsible for the discriminative feature
extraction with the original and the augmented samples
processed by fast Fourier transform (FFT). CIM aims to
decompose causal variables from mixed status to independent
status. M separates the independent causal variables by a
masker and imports them to C1 and C2 individually, which
intends to obtain sufficient causal spatial–spectral features
through the adversarial learning phase. Besides, DIM further
constrains the biclassifiers with distillation information of the
same class to improve the spatial–spectral feature adaptability.
The detailed descriptions of components are provided as
follows.

A. Problem Definition
For two HSI datasets, assume the sample set of the source

domain denoted as {Xo
S, YS} = {(xo

S1, yS1), . . . , (xo
Sn, ySn)},

where xo
Sn denotes the nth sample and ySn is the related label.

Similarly, the sample set of the target domain is denoted
as {XT} = {xT1, . . . , xTm}, where xTm represents the mth
sample. To mine the causal variables of {Xo

S, YS}, we employ
random FFT [13], where the phase component is derived
from xo

Sn and the amplitude component is sourced from xTm ,
resulting in an augmented FFT-based sample set of the source
domain denoted as {Xa

S, YS} = {(xa
S1, yS1), . . . , (xa

Sn, ySn)}.
Notably, augmented samples inject causal information into the
samples that are beneficial for the subsequent training. Our
work intends to minimize the discrepancy between the two
HSIs with the samples of {{Xo

S, YS}, {Xa
S, YS}}, and {XT} to

accomplish UDA for HSIC.

B. Dual Intervention for Feature Alignment
In MADI-UDA, both original and augmented source HSI

samples are fed into the dual-intervention module, which
incorporates CIM and DIM to decrease spatial–spectral align-
ment bias.

1) CIM: Since the high correlation between causal vari-
ables of the same dimension increases the difficulty of the
feature alignment, to eliminate the interference from spectral

Fig. 2. Detail of CIM. Ro
S and Ro

S are the embeddings of G(xo
S) and G(xa

S ).
Each square in ro

S and ra
S is considered a dimension, as shown in the green

dotted box, after being constrained by L fac with COR denoted as correlation
calculation, and the dimensions are independent as shown in the blue dotted
box.

variability, the UDA model for HSIC should guarantee that
causal variables are independent. In our model, we design CIM
to achieve the separation of causal spatial–spectral features
from the others. Specifically, to guarantee each dimension
of causal features contains unique information separate from
the other dimensions, we employ the FAC loss [14] that
minimizes the off-diagonal elements of the correlation matrix
in CIM. As a result, CIM ensures that each dimension of the
causal spatial–spectral features achieves independence from
the others, which is illustrated in Fig. 2. The FAC loss is
defined in the following equation:

L fac =
1
2
||C − I ||2F, C i j =

〈̃
ro

i , r̃a
j

〉∥∥̃ro
i

∥∥ · ∥∥̃ra
j

∥∥
i, j ∈ 1, 2, . . . , N (1)

where I denotes the unit vector, and r̃o
i and r̃a

j represent the
Z-score normalization of the ith and j th column of Ro

S and
Ro

S from G, respectively.
2) DIM: In the discriminator part, to effectively leverage

the discriminative knowledge acquired from the HSI source
domain, we design DIM to ensure feature representation
consistency and stable classification predictions with dual
classifiers. Specifically, DIM employs distillation to align the
distributions of original and augmented samples to reduce
prediction discrepancies. After performing the classification
of the samples in the source domain, soft labels are generated
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Fig. 3. Training steps of mask-adversary framework. The collaboration of
adversarial learning accomplishes effective knowledge transferring through
updates G, M, and C, respectively.

with T-Softmax defined as follows:

P(y|xS; θ, T ) =
exp( fy(xS; θ)/T )∑K

k=1 exp( fk(xS; θ)/T )
(2)

where fy is the real probability, fk represents the predicted
probability of the kth class, θ denotes the parameters of the
input network, T is the temperature hyperparameter, and K is
the number of categories.

In the DIM, we employ the cross-entropy loss
LE(xa

S , yS; θG, θCi ) and the Kullback–Leibler (KL) divergence
to align the predictions of the source training samples. The
loss in DIM denoted as Lkd is defined as follows:

Lcls
i

(
xo

S, xa
S; θG, θCi , T

)
= KLF

(
P

(
y|xa

S; θG, θCi , T
)
||P

(
y|xo

S; θG, θCi , T
))

(3)

Lkd =

2∑
i

(
αLE

(
xa

S , yS; θG, θCi

)
+ (1− α) · T 2

· Lcls
i

)
(4)

where KLF(·, ·) represents KL divergence and i ∈

{1, 2} to measure the difference between the outputs of
P(y|xa

S; θG, θCi , T ) and P(y|xo
S ; θG, θCi , T ).

C. Mask-Adversary UDA Framework
As illustrated in Fig. 3, the mask-adversary framework

consists of three adversarial training steps.
1) Masker Training: We facilitate the traditional adversarial

framework by incorporating a masker module, which aims
to supply sufficient causal features in the process of feature
alignment. The principle behind this approach is that the
separated causal spatial–spectral features encompass varying
degrees of causality. Sufficient features for classification are
obtained gradually through the masker and biclassifier learning
in an adversarial way. Specifically, the mask is defined as (5)
based on the Gumbel-Softmax function with λ ∈ U (0, 1)

mask = Gumbel-Softmax(r, λ N ). (5)

With the G, C1, and C2 fixed, the loss of training the masker
L M is defined as

Lsup = LE
(
C1((ro

⊗masko)+ (ra
⊗maska)), ys; θm

)
L inf = LE

(
C2((ro

⊗ (1−masko))

+ (ra
⊗ (1−maska))), ys; θm

)
LM = Lsup − L inf (6)

where r⊗mask and r⊗ (1−mask) represent the two separate
spatial–spectral causal features. In this manner, M effectively
distinguishes the variables with sufficient expression or not.

Algorithm 1 DICMA for HSIC
Input: {Xo

S, YS}, {XT}, xa
S ← FFT(xo

S, xT), iteration number
E , temperature parameters T , loss weight δ.
Randomly initialized θC1 , θC2 , θG, θM .
Output: θC1 , θC2 , θG.
For i = 1 to E do:

Step 1: Fixed θM and optimize θC1 , θC2 , θG with xo
S and xa

S
according to (1) and (4) by:

θG, θC1 , θC2 =← −∇θG,θC1 ,θC2
(Lkd + δL fac);

Step 2: Fixed θC1 , θC2 , θG and optimize θM with xo
S and xa

S
according to (6) by:

θM =← −∇θM(L M);

Step 3: Fixed θM , θG and optimize θC1 , θC2 with xo
S , xa

S and
xT according to (9) by:

θC1 , θC2 =← −∇θC1 ,θC2
(Lmlp);

Step 4: Fixed θM , θC1 , θC2 and optimize θG with xo
S , xa

S and
xT according to (10) by:

θG =← −∇θG(Lgen);

End.

2) Dual Classifier Training: The biclassifiers that consist of
C1 and C2 are designed with identical structures and randomly
initialized with the same parameters. With the G and masker
fixed, the loss is defined as

LC = Lsup + L inf. (7)

Furthermore, dual classifiers align the source and target HSI
domains by handling the prediction discrepancy, which is
achieved by loss defined as (8) that quantifies the difference
in predictions by C1 and C2 on the target domain

Ldis(xT; θG, θC1 , θC2) =
1
K

K∑
k=1

∣∣∣pC1
k (y|xT ; θG, θC1)

−pC2
k (y|xT ; θG, θC2)

∣∣∣. (8)

Maximizing the prediction discrepancy is beneficial in
detecting target domain samples that deviate significantly from
the source domain. Thus, with the G and masker fixed, the loss
Lmlp is defined as

Lmlp = LC − Ldis. (9)

3) Generator Training: Moreover, we fix the masker and
biclassifier and train G to decrease the prediction discrepancy
between the two classifiers, which promotes G to generate
target features that are closer to the decision boundary of the
biclassifier. The training loss Lgen is defined as

Lgen = Ldis. (10)

D. Algorithm of the Proposed Method

Briefly, the algorithm of DICMA is outlined as follows.
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TABLE I
STRUCTURE OF SPECIFIC NETWORK

Fig. 4. Classification results with compared methods on the PaviaC.
(a) DANN. (b) MCD. (c) CLDA. (d) UDACA. (e) SCLUDA. (f) DICMA.
(g) Ground truth. The number after the category in the legend represents the
number of PaviaU and PaviaC categories.

III. EXPERIMENT AND RESULT ANALYSIS

A. Data Description
The first HSIC cross-scene includes the Pavia University

(PaviaU) and Pavia Center (PaviaC) datasets. After removing
the noise band, PaviaU has a resolution of 610 × 340 with
103 bands, and PaviaC consists of 1096 × 492 pixels and
102 bands.

The second HSIC cross-scene comprises the Houston 2013
(Hou13) and Houston 2018 (Hou18) datasets. The Hou13 has
349 × 1905 pixels with 144 spectral bands, while the Hou18
has 48 bands and a resolution of 209 × 955. For the two
scenes, seven classes were chosen for experimental analysis.

B. Experimental Settings
The experiments were conducted on Windows 10 equipped

with an NVIDIA GeForce GTX 1650 with 4-GB GDDR6
memory. The experiments were performed with PyTorch
3.9 with Cuda11.3-cudnn8. Five UDA methods, including
DANN [15], MCD [16], CLDA [11], UDACA [12], and
SCLUDA [17], were employed for comparison. The sample
size is 11 × 11. Besides, we set the batch size to 16 and the
learning rate to 0.0001, E = 300, T = 4, and δ = 5. The
evaluation criteria included overall accuracy (OA), average
accuracy (AA), and kappa. The specific network structure of
the G, M, C1, and C2 is reported in Table I.

C. Results and Analysis
In the first experiment, the labeled PaviaU is utilized as the

source domain, while the unlabeled PaviaC is adopted as the
target domain. Table II and Fig. 4 present the compared clas-
sification results and maps. As observed, DICMA outperforms
other methods on the PaviaC dataset, achieving the best OA,
AA, and kappa of 91.15%, 91.22%, and 0.89, respectively.
Besides, our method achieves satisfactory accuracies in most
categories, particularly in classes 2, 4, and 7. In contrast,
DANN, MCD, and SCLUDA have lower OA than DICMA,

TABLE II
CLASSIFICATION PERFORMANCE FROM THE RESULTS WITH ALL THE

COMPARED METHODS OF THE PAVIA C (PAVIAU→ PAVIAC)

Fig. 5. Classification results with compared methods on Hou18. (a) DANN.
(b) MCD. (c) CLDA. (d) UDACA. (e) SCLUDA. (f) DICMA. (g) Ground
truth. The number after the category in the legend represents the number of
Hou13 and Hou18 categories.

TABLE III
CLASSIFICATION PERFORMANCE FROM THE RESULTS WITH ALL THE

COMPARED METHODS OF THE HOU18 (HOU13→ HOU18)

which indicates that the combination of dual-intervention con-
straints and adversarial learning in DICMA is more effective
than mere adversarial approaches for UDA. The results of
CLDA and UDACA show the benefits of dual-classifier and
adversarial learning.

In the second experiment, we employ the labeled Hou13
as the source domain, while the unlabeled Hou18 serves as
the target domain. Table III demonstrates the classification
results comparison, and Fig. 5 illustrates the map results. It can
be seen that DICMA achieves an OA of 74.67%, an AA
of 72.90%, and a kappa of 0.60. The OA of UDACA is
66.27%, which indicates that dense networks with adversarial
learning improve domain alignment performance. Notably, the
performance of all methods on Hou13 → Hou18 is lower
compared to the first scene, which indicates that the challenges
of this cross-scene classification task are more complex than
the Pavia scene.

Additionally, the computational efficiency of our method is
lower than other approaches. In summary, with the aid of the
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TABLE IV
ABLATION STUDY

Fig. 6. T-SNE visualization of feature maps. (a), (b), (e), and (f) represent the
initial data distribution of PaviaU, PaviaC, Hou13, and Hou18, respectively.
(c), (d), (g), and (h) represent the feature distribution after DICMA of PaviaU,
PaviaC, Hou13, and Hou18, respectively.

constrained CIM and DIM, our proposed framework transfers
effective knowledge for HSIC. However, the DICMA remains
hindered by the problems of severe distribution gaps and high
computational demands.

D. Ablation Study
To investigate the impact of the dual-intervention mech-

anism in the DICMA model, ablation experiments are
conducted to analyze the roles of Lkd correlation loss Lfac.
Table IV presents the comparison of the OA of the model
under different loss combinations. The approach with both
Lkd and Lfac yields optimal accuracy, which indicates the
collaborative promotion of performance by the two losses.
The approach with only Lkd generates the OA of 80.73% and
65.99% on the cross-scene of PaviaU→ PaviaC and Hou13→
Hou18, respectively, while the approach with Lfac improves the
accuracy by 12.13% and 7.8% in the two situations. Overall,
the ablation study demonstrates the effectiveness of both losses
in the CIM and DIM modules.

E. Visualization of Feature Adaptation
In this section, we employ the t-distributed stochastic neigh-

bor embedding (t-SNE) algorithm to visualize the intradomain
features in the two scenes. The visualization results are shown
in Fig. 6. As illustrated, during the initial stage, the samples
within each domain exhibit a disordered arrangement. From
Fig. 6(c) and (g), it is evident that the proposed model
achieves impressive alignment results in the source domain for
both scenes. Furthermore, Fig. 6(d) demonstrates that DICMA
achieves favorable alignment effects in PaviaC with an OA
of 91.15%. Besides, it is inferred from Fig. 6(h) that due to
the relative complexity of Hou18, some instances of category
mixing were observed even after domain alignment and the
OA is 74.67%.

IV. CONCLUSION

In this letter, we presented a novel dual-intervention mask-
adversary UDA framework that incorporates a generator,
masker, and biclassifier for HSIC. The dual-intervention
mechanism incorporates causal and distillation information to
improve the spatial–spectral feature alignment. Importantly,
the CIM accomplishes the independence of causal variables,
and the DIM employs a biclassifier and distillation constraint
to achieve the distribution alignment for HSIC. Experimental
results demonstrate the superiority of the DICMA model.
In the future, we plan to develop the few-shot and zero-shot
UDA for HSIC with the proposed mask-adversary framework.
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