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A B S T R A C T

The noise pollution issue seriously obstructs subsequent interpretation and application of the hyperspectral
image (HSI). In this work, differing from most existing HSI denoising methods ideally assumed that noise in
different bands denotes independent & identically distributed (i.i.d.), we propose a novel HSI denoising ap-
proach focusing on non-i.i.d. noise removal. The presented framework collaboratively models the non-i.i.d. noise
embedding within HSI and removals them under a deep spatio-spectral Bayesian posterior (DSSBP) structure.
Specifically, the non-i.i.d. noise estimation, distribution and removal procedure are both executed with the
model-driven based strategy and data-driven based strategy. Through blending the Bayesian variational pos-
terior and deep convolutional neural network, the proposed method both inherits the reliability of traditional
model-driven based methods for HSI noise modeling and the high efficiency of data-driven based methods for
parameters learning. Simulated and real experiments in different HSIs and non-i.i.d. noise scenarios testify that
the proposed DSSBP approach outperforms other existing methods for non-i.i.d. noise removal, in terms of
evaluation indexes and executive efficiency.

1. Introduction

Hyperspectral image (HSI) denotes the cube data comprised of
continuous, dense, and broad spectral response for the observed ob-
jects. Due to the image-spectrum reflecting property, HSI has the un-
ique superiority in terms of fine interpretation (Paoletti et al., 2018;
Brell et al., 2019). Compared with natural image, HSI owns more
spectrums from visible to infrared bands which contains more attribute
reflected information. Therefore, HSI has been widely applied to sur-
face classification (Sidike et al., 2018), anomaly detection (Wu et al.,
2018), agricultural monitoring (Asaari et al., 2018) etc. Nevertheless, in
the process of sensor imaging and atmospheric transmission, HSI in-
evitably suffers from the noise pollution issues. This phenomenon se-
verely degrades the quality of HSI, which is adverse for subsequent
processing and applications of HSI (Sun et al., 2017a; Hong et al.,
2019). In consequence, how to effectively removal the disturbed noise
in HSI is a vitally important and initial task before other interpretation
requirements (Wang et al., 2019).

Up to now, plenty of HSI noise reduction methods have been pre-
sented (Li et al., 2015; Zhuang and Bioucas-Dias, 2018). It should be

noted that differing from nature image, how to collaboratively combine
with the spatial and spectral feature is a critical point for 3D-cube
image denoising (Guo et al., 2013; Yue et al., 2018). According to the
strategy and structure, pre-existing HSI denoising approaches can be
classified into two types in this paper: model-driven and data-driven
based approaches. Detailed descriptions and analysis are given below.

(1) Model-driven based methods for HSI denoising: This type of
methods usually relies on the typical prior of HSI and then design
the optimization model to generating the denoising result (Sun
et al., 2018). Specifically, spatio-spectral total variation (Yuan
et al., 2012; He et al., 2016), spatio-spectral non-local mean
(Maggioni et al., 2012; Qian and Ye, 2013), spatio-spectral sparse
representation (Zhao and Yang, 2015; Lu et al., 2016), low-rank
prior (Zhang et al., 2014; Chen et al., 2017; Sun et al., 2017b; Xue
et al., 2018), tensor decomposition (Karami et al., 2011; Guo et al.,
2013; Chen et al., 2019a) have been developed for HSI denoising.
For instance, Yuan et al. simultaneously considered the spatial and
spectral dimension through total variational model (Yuan et al.,
2012). Maggioni et al. stacked 4-D cubes of voxels and exploited the
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local and non-local relevance between each or different cubes for
HSI denoising (Maggioni et al., 2012). Lu et al. established spatio-
spectral sparse dictionary to reduce disturbed noise in HSIs (Lu
et al., 2016). Recently, considering the HSI cube as a 3D-tensor
data, tensor decomposition methods have been testified that the
low-rank prior is beneficial for significant improvement of HSI re-
construction (Xie et al., 2018). As an example, Fan et al. developed
low-rank tensor constructing method to preserve spatial semantics
of HSI and concurrently reduce mixed noise (Fan et al., 2017; Fan
et al., 2018).

(2) Data-driven based methods for HSI denoising: Different from
model-driven based methods, this type of methods depends on the
large numbers of the sample data (clean label data and corre-
sponding noisy data), through end-to-end deep learning framework
to obtain the fitting denoiser. Recently, deep learning strategy has
been broadly utilized for remote sensing data processing (Zhu et al.,
2017), and makes progress in several image quality improvement
tasks such as missing data reconstruction (Zhang et al., 2018a),
pansharpening (Xing et al., 2018), super-resolution (Lanaras et al.,
2018) and despeckling (Zhang et al., 2018b) etc. Aiming at natural
image denoising, several works have been developed such as
DnCNN (Zhang et al., 2017), FFDNet (Zhang et al., 2018c), CBDNet
(Guo et al., 2019) etc. In terms of HSI denoising task relying on
deep learning, Xie and Li proposed a cascaded neural network in-
tegrating mutative non-linear function for reducing noise in HSI
(Xie and Li, 2017). Yuan et al. developed a spatial-spectral con-
volutional neural network with multi-scale and multi-level feature
for HSI denoising (Yuan et al., 2019). Chang et al. employed multi-
channel convolutional filters to take in hybrid noise for model
training (Chang et al., 2019). By resolving 3-D convolution to 2-D
convolution and spectral vector, Dong et al. presented a modified
HSI denoising 3D U-net (Dong et al., 2019). Besides, for better re-
moving mixed noise in HSIs, Zhang et al. further bring spatio-
spectral gradient information (Zhang et al., 2019) into the deep
CNN. Besides, Liu and Lee (2019) utilized 3D dilated convolution
neural network for HSI denoising, extracting deep features from
spatial and spectral prospects.

Generally, data-driven based methods for HSI denoising are faster
and more convenient through an end-to-end learning framework,
without careful adjustment of hyper-parameters and complex optimi-
zation in model-driven based methods. Conversely, model-driven based
methods for HSI denoising can better conform to the dominant prior of
HSI such as low rank property, without establishing large training HSI
samples in data-driven based methods (Yuan et al., 2019). Besides, most
existing HSI denoising methods ideally assumed that noise in HSI de-
notes i.i.d. (Xiong et al., 2019) such as Gaussian noise. However, the
actual noise distribution is more complicated in different bands, and
usually emerges with non-i.i.d. form (Yue et al., 2019a) in most HSIs.
This issue also limits the practicability and robustness of many HSI
denoising methods.

Therefore, how to unite the merits of both model-driven and data-
driven methods and reduce their weakness is significant for HSI de-
noising especially directing at non-i.i.d. noise. The main purposes can
be summarized as two points below: (1) Considering HSI spatio-spectral
characteristic; (2) Aiming at mixed noise. From this prospect, we pro-
pose a novel deep spatio-spectral Bayesian posterior (DSSBP) frame-
work in this work for HSI non-i.i.d. noise removal. The presented DSSBP
collaboratively models the HSI non-i.i.d. noise and removals them
under the spatio-spectral Bayesian posterior structure. Specifically, the
non-i.i.d. noise modeling and removing procedure are both executed
with the deep spatio-spectral learning model. Besides, taking the spatial
directionality and spectral heterogeneity of sparse noise in HSI into
consideration, the anisotropic total variational term is utilized for
modeling the sparse noise especially stripe noise. The highlighted in-
novations of this work are summarized below:

(1) The proposed DSSBP can simultaneously estimate non-i.i.d. noise
and sparse-distributed noise distribution of each band in HSI and
removal noise in a Bayesian variational framework. This tactic is
more practical for most realistic scenarios, contrasted with the
idealized i.i.d. noise assumption in most HSI denoising methods.

(2) To simultaneously exploit spectral relevance and consider spatial
difference, 3D and 2D convolution neural network are both em-
ployed into the proposed HSI denoising model. Notably, non-i.i.d.
noise included sparse noise estimating and removing operations are
collaboratively parameterized into the end-to-end data-driven fra-
mework.

(3) Through blending the Bayesian variational posterior and deep
neural network, the proposed DSSBP inherits the superiority of both
traditional model-driven and data-driven based methods.
Experiments on different HSI non-i.i.d. noise scenarios testify that
the presented approach outperforms other contrastive algorithms
for noise removal.

The remaining parts are arranged below. In Sections 2 and 3, the
problem formulation and the proposed method is depicted for HSI non-
i.i.d. noise removal, respectively. Then the simulated and real experi-
mental results are shown in Section 4. In the end, the conclusion and
prospect are generalized in Section 5.

2. Problem formulation

In real scenarios, HSI noises generally have more complicated sta-
tistical structures (Zheng et al., 2019). The noise level and type may be
different and diversity in different bands (such as mixed noise). And in
the given band, the spatial distribution of noise is more complex and
anisotropic (Chen et al., 2018), which not just obeys the Gaussian
distribution. Therefore, in this work we considered more complex HSI
noise (non-i.i.d. noise) beyond only Gaussian in HSI denoising. Let the
HSI denotes 3-D cube × ×Y w h b, in which w and h stand for the spatial
dimension, b represents spectral dimension of the HSI. Then the de-
graded model from clean HSI X to noisy HSI Y can be formulated as
(Rasti et al., 2018):

= + +Y X N S (1)

among this relationship N stands for the non-i.i.d. noise. S is the sparse
noise especially stripe noise in observed HSI. Apparently, to acquire the
noise-free result X from Eq. (1), the inverse problem is ill-posed and
additional constraints and priors need to be imposed. Then we construct
the noise model to depict the degraded procedure of the noisy HSI Y as
following:

=i bY YÑ( |Z , ), 1, 2,i i i i
2 (2)

where N µ(·| , )2 marks as the Gaussian distribution through mean µ
and variance 2. Z denotes the latent clean HSI underlying Y . Notably,
the noise distribution in different bands of HSI is independent and
discrepant. Different from most HSI denoising methods assuming i.i.d.
noise distribution in Eq. (2), we consider the noise in HSI as a non-i.i.d.
distribution to accord with the realistic scenario. The noise variance

= { , , , }b
2

1
2

2
2 2 is flexible embedding in spatial dimension, and a

rational conjugate prior as imposed in (Yue et al., 2019b) is introduced
as below:

=G r r
i b|

2
1,

2
, 1, 2,i i

i2 2
2 2

(3)

where IG (·| , ) denotes the inverse Gamma distribution by para-
meters and , stands for the filtering result of the residual map
through a Gaussian filter within ×r r window. In other words, the noise
variance 2 is pixel-wise Gaussian distribution for each band in HSI.

In addition, the original clean HSI X obviously exists a dominant
prior with the latent clean HSI Z. From this perspective, the conjugate
Gaussian prior for Z is imposed as below:
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=i bZ Z XÑ( | , ), 1, 2,i i i 0
2 (4)

where 0
2 represents a predetermined parameter with a small value.

Besides, the sparse noise S such as stripe noise in HSI simultaneously
presents with spatial horizontal or vertical distribution. And the density
of sparse noise also differs in spectral dimension. Naturally, the con-
jugate sparse prior K for S is constrained as follows:

=K Y i bS S Y( | , ), 1, 2,i i i (5)

Combining Eqs. (2)–(5), we can acquire a full Bayesian inference
framework for the HSI non-i.i.d. noise modeling issue. Then our target
focuses on estimating the posterior on the latent clean HSI Z, noise
variance 2 and sparse-distributed noise S through the noisy HSI Y ,
denoted by p Z S Y( , , | )2 .

3. Methodology

3.1. Spatio-spectral Bayesian posterior network

To estimate the posterior p Z S Y( , , | )2 through Eqs. (2)–(5), a
probability distribution q Z S Y( , , | )i i i

2 for each spectrum in HSI is es-
tablished in consideration of the conditional independence between the
latent clean HSI Z, noise variance 2 and sparse-distributed noise S:

=q q q qZ S Y Z Y Y S Y( , , | ) ( | ) ( | ) ( | )i i i i i i
2 2 (6)

According to the conjugate priors in Eqs. (3)–(5), we can logically
speculate the three estimated posteriors as below:

=q N Y W m Y WZ Y Z Y Y( | ) ( | ( , ; ), ( , ; ))i i i i s E i i s E
2 (7)

=q IG Y W Y WY Y Y( | ) ( | ( , ; ), ( , ; ))i i i i s D i i s D
2 2 (8)

=q TV WS Y S Y( | ) ( |K ( ; ))i i s s s (9)

where i and mi
2 represent the intermediate results to calculated the

posterior latent clean HSI Z from noisy HSI Y . i and i represent the
intermediate results to calculated the posterior noise variance 2 from
noisy HSI Y . Ks represent the spatio-spectral gradient (Xu et al., 2019)
through total variational (TV) prior to constrain the sparse-distributed
noise S. Yi and Ys stand for the i-th band and its neighboring spectral
cube in Y , respectively. WE and WS denote the trainable parameters
within the non-i.i.d. noise estimation network and sparse noise spatio-
spectral gradient network, respectively. WD denotes the trainable
parameters within the non-i.i.d. noise distribution network. The flow-
chart and procedure of the presented framework is depicted in Fig. 1.
“s” stands for the stride size in convolutional operation. “c” represents

the channel number of feature maps. “3 × 3× 3× 32” denotes the 3D-
filters of size 3 × 3 × 3 with 32 channels. “3 × 3 × 64” denotes the
2D-filters of size 3 × 3 with 64 channels.

Specifically, the network parameters of WE, WD and WS are in-
tegrated through the aforementioned posteriors by training samples. In
other words, non-i.i.d. noise and sparse noise estimating and removing
operations are collaboratively parameterized into the end-to-end data-
driven learning framework.

3.2. Network structure and learning

Aiming at non-i.i.d. noise estimation network and noise distribution
network in Fig. 1, we separate the spatial band and its adjacent spectral
cube, and utilize the multi-channel 2D convolutional neural network to
generate the spatial and spectral feature maps. Then both two feature
maps are concatenated with a united result for subsequent operation. In
terms of non-i.i.d. noise estimation network contained parameters WE,
the layers depth is set as nine 2D convolutional and activate layer (2D
Conv + ReLU). And for non-i.i.d. noise distribution network contained
parameters WD, the layers depth is set as five 2D convolutional and
activate layer, as shown in Fig. 1. The middle feature maps quantity of
all these layers are fixed with 64 the kernel size is all set as 3 × 3 with
stride equal to 1.

For the sparse noise network, we employ the 3D convolutional
neural network to jointly extract spatio-spectral information. Notably,
the spectral gradient cube is served as the input data into the sparse
noise network with parameters WS. The layers depth of the sparse noise
network is set as five 3D convolutional and activate layer (3D
Conv + ReLU). The middle feature map number of all these layers is
fixed with 32 and the kernel size is all set as 3 × 3 × 3 with stride
equal to 1.

After constructing the whole Bayesian variational framework, the
lower bound of the non-i.i.d. noise (Yue et al., 2019b) in HSI can be
derived:

=L E D q p D q pZ Y Z Y Z Y( , ; ) ( ( | )|| ( )) ( ( | )|| ( ))q KL KLZ Y
2

( , | )
2 22

(10)

where the three sub-items in Eq. (10) can be as the following form:

=E q pZ Y Y Z Z( , | ) log ( | , )d dq Z Y( , | )
2 2 22 (11)

=p Y ZY Zlog ( | , ) 1
2

log 2 1
2

log ( )
2i

b

i
i i

i

2 2
2

2 (12)

Fig. 1. Flowchart and procedure of the presented approach.
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simultaneously combining with Eq. (6), Eq. (11) and Eq. (12), the
likelihood Eq Z Y( , | )2 of original clean data is calculated as:

= + + +E mean Y m1
2

log 2 log ( ) [( ) ]q i i
i

i
i i iZ Y( , | )

2 22

(13)

In terms of the KL divergence D q pZ Y Z( ( | )|| ( ))KL for Gaussian dis-
tribution in Eq. (10),

=D q p D N m p XZ Y Z Z Z( ( | )|| ( )) ( ( | , )|| ( | , ))KL
i

b

KL i i i i i
2

0
2

(14)

simultaneously combining with Eq. (2), Eq. (4), Eq. (7) and Eq. (14), the
likelihood D q pZ Y Z( ( | )|| ( ))KL can be calculated as:

= +D q p mean
X m mZ Y Z( ( | )|| ( )) 1

2
( )

2
log 1KL

i i i i
2

0
2

2

0
2

2

0
2

(15)

And for the KL divergence D q pY( ( | )|| ( ))KL
2 2 for inverse Gamma

distribution in Eq. (10), it can be depicted as:

=D q p D IG IG r r
Y( ( | )|| ( )) ( ( | , )|| ( |

2
1,

2
))KL

i

b

KL i i i i
i2 2 2 2

2 2

(16)

simultaneously uniting Eq. (3), Eq. (8), and Eq. (16), the final form of
D q pY( ( | )|| ( ))KL

2 2 can be derived as:

= + +D q p mean
p

Y( ( | )|| ( )) ( ) ( ) log ( )
( )

log
2

KL i i
i

i

i

2 2
2

(17)

where is equal to ( 1)r
2
2

in Eq. (17), (·) represents the digamma
function.

Besides, taking the spatial directionality and spectral heterogeneity
of sparse noise in HSI into consideration in Eq. (9), the anisotropic TV
term is utilized for modeling the sparse noise especially stripe noise:

= +TV S Y K K( ; )i v s h s1 1 (18)

where the vertical and horizontal gradient of spectral difference are
imposed with L1 norm in the sparse noise network.

In terms of the holistic network optimization, the lower bound of
the non-i.i.d. noise in Eq. (10) and sparse noise TV term in Eq. (14) are
blended into the integrative loss function as below:

= +loss W W W L TVZ Y S Y( , , ) ( , ; ) · ( ; )E D S i
2 (19)

where devotes the penalty parameter of the sparse noise TV term.
Relying on Eq. (19), the proposed framework conforms to the back
propagation (BP) gradient descent algorithm (LeCun et al., 1990) to
optimize three network parameters WE, WD, and WS.

4. Experimental results

4.1. Model training and parameters setting

For the training of the proposed HSI noise estimating and removing
model, the HSI data in Xiongan (Matiwan Village), China, acquired by
airborne hyperspectral imager is utilized as the training dataset. The
dataset has the characteristics of high spectral-resolution, high spatial-
resolution, and various ground objects after geometric and radiation
correction. After eliminating the noisy bands, 242 clean bands with the
size of 1580 × 3750 is set as the training samples. These training labels
are subsequently cropped as the cube data with the size of
64 × 64 × 24, where the spatial stride and spectral stride are set as 32
and 3, respectively. To generate the non-i.i.d. noisy HSI data, the si-
mulated noise and stripe (Roshan and Amr, 2011) for each band are
imposed on the clean HSI cubes. The non-i.i.d. noise variance

= { , , , }b
2

1
2

2
2 2 as the range of [0–0.5]. For each band in HSIs, the

specific non-i.i.d. noise variance b
2 are selected from the range of

[0–0.5] through uniform random distribution. Besides, data resampling
and rotation are also employed to augment the quantity of training
samples and enhance model generalization ability for different testing
HSIs.

200 HSI patches are separately employed from the training patches
as the validation data sets. The chosen mechanism is random selection
between the original noise-free HSI patches. The whole training pro-
cedure is based on the Pytorch framework with Python language. The
batch size and epoch number are fixed as 64 and 300, respectively. For
optimizing the model parameters in the BP procedure, Adam (Kingma
and Ba, 2014) gradient descent algorithm is carried out with the given
parameters 0.9 and 0.999. For per 25 epochs, learning rates are pro-
gressively descended with multiplicative factor 0.5 where the initial
value is equal to 0.01 (Zhang et al., 2020). The Gaussian filter window
size r and 0

2 are set as 5 and 1e-4, respectively. The penalty parameter
in Eq. (15) is devoted as the reciprocal of cube spectrum number.
Available codes will be released at: https://github.com/WHUQZhang/
DSSBP.

4.2. Testing data and performance evaluation

To validate the availability of the presented approach, both the si-
mulative and actual scenarios are implemented for HSI denoising. For
simulated experiments, three different cases on W. DC and Pavia HSIs
are executed to validate the capacity on i.i.d. noise, non-i.i.d. noise, and
mixed noise removal, respectively. And for real experiments, five dif-
ferent HSIs are employed to testify the practicability under the realistic
and complicated scenarios. In addition, five state-of-the-arts HSI de-
noising algorithms HSSNR (Othman and Qian, 2006), BM4D (Maggioni
et al., 2012), LRMR (Zhang et al., 2014), NMoG (Chen et al., 2018),
SSGN (Zhang et al., 2019) are served as the contrastive methods.
Considering fair comparison, SSGN is also retraining with the same
training samples with the presented approach.

As to the performance evaluation, the mean PSNR for each band,
mean SSIM (Chen et al., 2019b) for each band, and mean spectral angle
(MSA) for each spectral vector are measured as the objective evaluation
indexes for simulated experiments. MPSNR and MSSIM depict the
structural recovering ability in spatial domain, and MSA measures the
spectrum maintaining ability in spectral domain. In addition, the con-
suming times of all the HSI denoising methods are recorded under the
same operating environment for the comparisons of executed effi-
ciency.

4.3. Simulated experiments

In this section, three different cases in W. DC Mall and Pavia HSIs
are executed to validate the capacity on i.i.d. noise, non-i.i.d. noise, and
mixed noise removal, respectively. Detailed descriptions are listed as
following.

Case 1 (i.i.d. Gaussian noise): For the original HSI data, all the bands
are degraded through i.i.d. Gaussian noise with equal-distributed on
spatial dimension and identical-distributed on spectral dimension. The
i.i.d. Gaussian noise variance 2 is equal to 0.1 for all the bands.

Case 2 (non-i.i.d. Gaussian noise): For the original HSI data, all the
bands are imposed with non-i.i.d. Gaussian noise, which denotes un-
equal-distributed on spatial dimension and unidentical-distributed on
spectral dimension. We set r equal to 11, and the non-i.i.d. noise var-
iance = { , , , }b

2
1
2

2
2 2 as the range of [0–0.5] in Eq. (6). The max-

imum level of non-i.i.d. noise is equal to 0.5. For different bands in
HSIs, the specific non-i.i.d. noise variance b

2 are selected from the
range of [0–0.5] through uniform random distribution.

Case 3 (non-i.i.d. Gaussian noise + stripe noise): Uniformly to Case 2,
all the bands are contaminated with the non-i.i.d. Gaussian noise with
unequal-distributed on spatial dimension and unidentical-distributed
on spectral dimension. Besides, partial spectrums in HSI are imposed
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with stripe noise. 10 bands (Band 17, 27, …, 107) of the original HSIs
were imposed with simulated stripe noise, where the stripe intervals,
locations, and intensity are different for each selected band, through
scoped random values of rate (0.3 ~ 0.6) and mean (0.05 ~ 0.25)
(Zhang et al., 2019).

The quantitative evaluations and consuming-time of the five algo-
rithms and the proposed method in the W. DC and Pavia University
HSIs are listed in Table 1 and Table 2, respectively. Notably, the best
indexes are highlighted with the bold type, and the second indexes are
marked with underline type. Besides, the six denoising results of Case 2
(non-i.i.d. Gaussian noise) and Case 3 (non-i.i.d. Gaussian
noise + stripe noise) on W. DC data, and Case 2 (non-i.i.d. Gaussian
noise) on Pavia University data are given in Figs. 2–4 with pseudo-color
or gray color, respectively. To better distinguish the details of the re-
storing results, the magnification maps of the local area are also shown
in the lower of Figs. 2–4, respectively.

In Case 1 (i.i.d. Gaussian noise) experiments, several HSI denoising
methods like LRMR, NMoG, SSGN and proposed method can all obtain
qualified results. NMoG performs the best on MSSIM and MSA in W. DC
data, and MSSIM in Pavia University data. SSGN performs the best on
MPSNR in Pavia University data, due to the HSI i.i.d. noise hypothesis.
Particularly, although the proposed method just employs the non-i.i.d.
noise simulated training samples, it can also reach the approximate
level of the i.i.d. noise-based methods like SSGN. To a certain extent,
this case demonstrates that HSI non-i.i.d. noise strategy embedding the
proposed method has a downward compatibility for i.i.d. noise. By
means of noise estimation and distribution thoughts under the spatio-
spectral Bayesian posterior framework, i.i.d. noise in HSIs can also be
well solved even though training with the non-i.i.d. noise HSI samples.
The noise modeling operations are indirectly beneficial for noise re-
duction in HSI.

In Case 2 (non-i.i.d. Gaussian noise), though the HSSNR approach
reveals a certain noise reduction effect under complex noise scene, as
displayed in Figs. 2(b) and 4(b), it lacks the qualified capacity of dis-
posing noisy bands with non-i.i.d. noise, and two HSI denoising out-
comes still involve evident residuary noise. For BM4D method, it can
overall removal the disturbed noise in HSI as responded in Figs. 2(c)
and 4(c). However, the over-smoothing issue also obviously exists in the
denoising results whose spatial textures are missing and blurry, on
account of the non-local blocks mean thought in BM4D. LRMR and
NMoG generate decent recovering outcomes in Figs. 2 and 4 through
utilizing the low-rank prior of matrix or tensor. Whereas spectral dis-
tortion still exists to some degree especially in the magnified regions of
Fig. 2(d)–(e) and Fig. 4(d)–(e), respectively. Besides, these model-
driven based methods are time-consuming with hundreds of seconds, as
recorded in Tables 1 and 2. For SSGN model, the artifacts and residual
noise distribute in both global results and local amplifying regions, as

Table 1
Quantitative evaluation of the simulated W.DC HSI experiments.

Noisy HSI HSSNR BM4D LRMR NMoG SSGN Proposed

Case 1: i.i.d. Gaussian noise
MPSNR 23.28 27.26 28.64 33.22 34.51 34.34 34.53
MSSIM 0.769 0.923 0.941 0.981 0.983 0.982 0.982
MSA 19.47 9.083 5.116 4.628 4.127 4.248 4.129
Time/s – 304.4 461.8 449.6 513.8 7.3 14.8
Case 2: non-i.i.d. Gaussian noise
MPSNR 19.78 23.51 24.24 28.73 29.76 25.84 30.88
MSSIM 0.654 0.84 0.856 0.958 0.962 0.893 0.976
MSA 23.72 11.34 10.37 6.14 5.73 9.28 5.102
Time/s – 312.6 479.5 437.9 538.2 7.2 15.0
Case 3: non-i.i.d. Gaussian noise + stripe noise
MPSNR 20.82 25.64 26.39 28.35 29.98 27.28 30.67
MSSIM 0.669 0.893 0.938 0.957 0.967 0.947 0.974
MSA 22.47 10.92 7.87 6.142 6.298 6.564 5.436
Time/s – 314.8 486.3 440.7 542.5 7.3 15.1

Table 2
Quantitative evaluation of the simulated Pavia University HSI experiments.

Noisy HSI HSSNR BM4D LRMR NMoG SSGN Proposed

Case 1: i.i.d. Gaussian noise
MPSNR 24.36 29.72 31.48 34.86 36.97 37.71 37.69
MSSIM 0.783 0.951 0.963 0.971 0.989 0.983 0.988
MSA 17.34 6.942 5.624 4.583 3.695 3.824 3.642
Time/s – 284.6 412.5 385.7 468.4 5.5 12.3
Case 2: non-i.i.d. Gaussian noise
MPSNR 18.67 24.15 26.14 28.25 29.11 27.70 30.26
MSSIM 0.615 0.806 0.851 0.951 0.962 0.945 0.971
MSA 20.38 11.81 6.420 6.673 6.074 7.436 5.589
Time/s – 291.3 423.8 394.2 473.5 5.6 12.4
Case 3: non-i.i.d. Gaussian noise + stripe noise
MPSNR 17.84 22.93 25.72 27.68 28.43 27.14 29.68
MSSIM 0.593 0.824 0.839 0.887 0.922 0.892 0.934
MSA 24.68 12.73 10.46 8.634 7.113 8.249 6.252
Time/s – 297.8 431.5 389.2 475.6 5.5 12.6

Fig. 2. Non-i.i.d. noise removing results of Case 2 in W.DC data simulated experiments.

Q. Zhang, et al. ISPRS Journal of Photogrammetry and Remote Sensing 164 (2020) 125–137

129



Fig. 3. Non-i.i.d. + stripe noise removing results of Case 3 in the W.DC data simulated experiments.

Fig. 4. Non-i.i.d. noise removing results of Case 2 in the Pavia data simulated experiments.

Fig. 5. The range of noise level and SSIM denoising result in WDC simulated HSI datasets.
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shown in Figs. 2(f) and 4(f). It seems to apparently overfit in training
samples by the hypothesis of i.i.d. noise in HSIs. In terms of the pro-
posed method for non-i.i.d. noise removal, it performs best on MPSNR,
MSSIM and MSA in both W.DC and Pavia University data, as listed in
Tables 1 and 2. In addition, the proposed method also behaves stronger
on spectral preservation and noise removal compared with other five
HSI denoising algorithms, as depicted in Figs. 2(g) and 4(g).

In Case 3 (non-i.i.d. Gaussian noise + stripe noise) experiments,
HSSNR and LRMR cannot eliminate the stripe noise, as depicted in
Fig. 3(b) and (d). For BM4D approach, it can overall removal the mixed
noise in HSI as displayed in Fig. 3(c). However, the over-smoothing
issue still obviously exists in the denoising results whose spatial textures
are missing and blurry. NMoG can well deal with the mixed noise in
Fig. 3(e). Nevertheless, the spectral distortion obviously emerges to
some degree especially within magnified areas of Fig. 3(e). In terms of
the proposed method for non-i.i.d. noise and stripe noise removal, it
performs best on MPSNR, MSSIM and MSA in both W.DC and Pavia
University data, as listed in Tables 1 and 2. In addition, the proposed
method behaves stronger on spectral preservation and noise removal

compared with other five HSI denoising algorithms, as depicted in
Fig. 3(g). This also verifies the availability of sparse noise TV term to
constraint stripe noise, and the effectiveness of non-i.i.d. noise esti-
mation and distribution thoughts by the spatio-spectral Bayesian pos-
terior framework.

Besides, consuming-time of the five algorithms and the proposed
method in the W. DC and Pavia University HSI are both recorded in
Tables 1-2, respectively. On the one hand, contrasted with the model-
driven based approaches like LRMR or NMoG, the presented framework
manifests great superiority in terms of processing efficiency for HSI
denoising. On the other hand, compared with the data-driven based
approaches like SSGN method, the presented framework outperforms in
terms of the HSI non-i.i.d. noise removal under the same environment.
For each band in WDC simulated HSI, the specific non-i.i.d. noise var-
iance b

2 are selected from the range of [0–0.5] through uniform random
distribution, as shown in Fig. 5 (1). The SSIM results of before and after
denoising for each band are displayed in Fig. 5 (2). The proposed
method shows the stabilization for both high- and low-level noise re-
moval in HSI denoising procedure.

Fig. 6. Noise removing pseudo-color outcomes of the Indian data in the real experiments.

Fig. 7. Noise removing gray-color outcomes of the Indian data in the real experiments.
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4.4. Real experiments

In the real experiments, five actual HSIs (Indian Pines, Urban, Mars,
EO-1 and Zhuhai-1 data set) (Huang et al., 2019) polluted by noise are
employed as the testing data to inspect the practicability of the pre-
sented approach. It must be noted that noise types and distribution are
all complicated and non-i.i.d. in these three data sets. The Indian HSI is
principally contaminated with Gaussian and Poisson mixed noise. The
Urban HSI is mainly degraded by stripe and Gaussian mixed noise.
While in the Mars data, due to its complicated observation conditions, it
includes more complex stripe noise and Gaussian noise. Through tes-
tifying these data sets embedding with different type noise, we can
better distinguish the ability of the proposed method for non-i.i.d. noise
removal in different HSIs.

In addition, five HSI denoising methods HSSNR, BM4D, LRMR,
NMoG and SSGN are served as the contrast algorithms for better com-
parison. The false-color and gray-color results are both shown to reveal

the ability of spatial structure recovery and spectral information pre-
servation. To further investigate the reconstruction quality of the HSI
denoising results, the horizonal normalized mean digital number (DN)
profiles of special band in the two data sets are given through different
denoising methods. And finally, the consuming times of each algorithm
are checked to demonstrate the efficiency for HSI denoising under the
same operating environment.

(1) Indian Pines data set: The Indian HSI is obtained through the
Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and mainly
contaminated with Gaussian and Poisson mixed noise. The initial Indian
HSI composes of 220 spectrums, whose spatial size denotes 145 × 145.
While some bands are severely corrupted by atmosphere scattering and
water absorbing phenomenon. After eliminating these useless spec-
trums, 206 bands of the original Indian Pines data are testified through
six algorithms HSSNR, BM4D, LRMR, NMoG, SSGN and the proposed
method. The noise removing pseudo-color results of bands (2, 24, 145)
and gray-color results of band 151 in this data set are given in

Fig. 8. Horizonal mean digital number curves within band 151 of Indian.

Fig. 9. Noise removing pseudo-color results of the Urban data real experiments.
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Fig. 6(b)–(g) and Fig. 7(b)–(g), respectively. To better distinguish the
details of the restoring results, the magnification maps of the selected
local area are also shown in the lower of Figs. 6–7, respectively.

HSSNR method reveals a certain noise reduction effect under com-
plex noise scene, as displayed in Figs. 6(b) and 7(b). It lacks qualified
capacity of disposing noisy bands with complex noise, as well as the two
HSI denoising outcomes still involve evident residuary noise. For
BM4D, it can overall removal the disturbed noise in HSI as responded in
Figs. 6–7(c). However, the over-smoothing issue also obviously exists in
the denoising results whose spatial textures are missing and blurry, on
account of the non-local blocks mean thought in BM4D. LRMR and
NMoG generate decent recovering outcomes in Figs. 6–7 through uti-
lizing the low-rank prior of matrix or tensor, whereas obvious spectral
distortion still exists to some degree especially in the magnified regions
of Fig. 6(d)–(e), respectively. Besides, For SSGN method, the artifacts
and residual noise distribute in the global results and local amplifying
regions, as shown in Figs. 6(f) and 7(f). It seems to apparently overfit in
training samples by the hypothesis of i.i.d. noise in HSIs. In terms of the

proposed method aiming at realistic noise removal, it performs the best
on spatial structure recovery and spectral information preservation in
Indian Pines data, as displayed in Figs. 6(g) and 7(g).

In addition, the horizonal mean digital number curves of special
spectrum within the Indian Pines HSI are given through different de-
noising methods in Fig. 8. The horizontal axis in Fig. 8(a)–(g) stands for
the row number of Indian Pines data set. And the ordinate coordinate
denotes as the average normalized DN in per row. As depicted in
Fig. 8(a), due to the severe noise interference, violent undulations can
be noticed within the original profile. Experiencing the recovery pro-
cedure, the reconstruction profile of the presented approach behaves
smoother on horizonal mean DN profiles in band 151 compared with
other five HSI denoising algorithms, as depicted in Fig. 8(g). This also
affirms the effectivity of the presented approach for non-i.i.d. noise
reduction in Indian Pines data set.

(2) Urban data set: The Urban HSI is captured through the
Hyperspectral Digital Imagery Collection Experiment (HYDICE) and
mainly degraded by stripe and Gaussian mixed noise. The noise

Fig. 10. Noise removing gray-color results of the Urban data real experiments.

Fig. 11. Horizonal mean digital number curves within band 104 of Urban.
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removing pseudo-color results of bands (24, 104, 187) and gray-color
results of band 104 in this data set are given in Figs. 9 and 10, re-
spectively.

HSSNR still contains large area noise as shown in Figs. 9(b) and
10(b). For BM4D approach, it can partly removal the mixed noise in HSI
as displayed while residual stripe noise still exists. Overall, LRMR and
SSGN perform well on spectral preservation and noise suppression,
while they are not able to well eliminate stripe noise, as shown in
Fig. 9(d) and (f). NMoG can well deal with the mixed noise in Figs. 9(e)
and 10(e). Nevertheless, the spectral distortion obviously emerges to
some degree, especially highlighted within the magnified areas of
Fig. 9(e). And in terms of the proposed approach, it performs the best
on spatial structure recovery and spectral information preservation, as
displayed in Figs. 9(g) and 10(g).

In addition, the horizonal mean digital number curves of special
spectrum within Urban HSI are given through different denoising
methods. The abscissa axis in Fig. 11(a)–(g) stands for the row number
of Urban data set. And the vertical axis denotes as the average nor-
malized DN in per row. As depicted in Fig. 11(a), because of hybrid

noise pollution, intense undulations can be observed within the original
profile. Undergoing the noise removal procedure, the reconstruction
profile of the presented approach behaves smoother in band 104,
compared with other five HSI denoising algorithms as depicted in
Fig. 11(g). This also manifests the availability of the presented frame-
work for non-i.i.d. noise reduction in Urban HSI.

(3) Mars data set: The Mars HSI is observed through the Compact
Reconnaissance Imaging Spectrometer for Mars (CRISM), whose cube
size of denotes 420 × 420 × 102. Due to its complicated observation
conditions, it includes more complex stripe noise and Gaussian noise.
Then the noisy data is processed by six algorithms HSSNR, BM4D,
LRMR, NMoG, SSGN and the proposed method. The noise removing
gray-color results of band 2 and 102 embedding with mixed noise in
this data set are given in Figs. 12(b)–(g) and 13(b)–(g), respectively. To
better distinguish the details of the restoring results, the magnification
maps of the selected local area are also shown in the lower of
Figs. 12–13, respectively.

Overall, HSSNR, BM4D, LRMR, NMoG and SSGN perform well on
noise reduction, but they cannot integrally eliminate the mixed noise

Fig. 12. Noise removing results in Band 2 of the Mars data real experiments.

Fig. 13. Noise removing results in Band 102 of the Mars data real experiments.
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especially for HSSNR method, as displayed in Figs. 12 and 13(b)–(f). It
indicates that these model through i.i.d. noise assumption or training
samples intend to overfit the non-i.i.d. noise in Mars data set, to dif-
ferent degrees. Compared with all the contrast methods, the proposed
method steadily removals the blended noise, while concurrently en-
sures the spatial texture and spectral consistency, without drawing into
evident artifacts or residual noise, as depicted in Figs. 12(g) and 13(g).

(4) EO-1 dataset: The EO-1 HSI is captured through the Hyperion
sensor and mainly degraded by stripe and Gaussian mixed noise. The
noise removing gray-color results of band 2 in this data set are given in
Fig. 14, with the size of 200 × 200 × 166.

HSSNR still contains large area noise as shown in Fig. 14(b). For
BM4D, it can partly removal the mixed noise in HSI as displayed while
residual stripe noise still exists. LRMR and SSGN still have some stripe
noise, as shown in Fig. 14(d) and (f). NMoG can well deal with the
mixed noise in Fig. 14(e). Nevertheless, some spatial artifacts obviously
emerge, especially in the magnified areas of Fig. 14(e). And for the
proposed approach, it outperforms on spatial structure recovery and
mixed noise removal, as displayed in Fig. 14(g).

(5) Zhuhai-1 dataset: The Zhuhai-1 HSI is obtained with 32 bands
and mainly contaminated with random noise. The noise removing re-
sults of band 3 in this data set are given in Fig. 15(b)–(g), respectively.
To better distinguish the details, the magnification maps of the selected
area are also shown in the lower of Fig. 15.

HSSNR lacks the qualified capacity of disposing noisy bands with
complex noise, whose outcome still involves evident residuary noise in
Fig. 15(b). For BM4D, it can overall removal the disturbed noise in HSI
as responded in Fig. 15(c). However, the over-smoothing issue also
obviously exists in the denoising result. For LRMR, NMoG and SSGN
methods, the residual noise still distributes in the global results and
local amplifying regions, as shown in Fig. 15(d)–(f). In terms of the
proposed method aiming at realistic noise, it performs the best both on
spatial details preservation and non-i.i.d. noise reduction in Zhuhai-1
data, as displayed in Fig. 15(g).

(6) Blind quality contrast: The blind performance evaluation
comparison index (mean Q-metric) of five real experiments has been
provided in this section, as listed in Table 3. Q-metric is used to eval-
uate the image quality of spatial information preservation. The higher

Fig. 14. Noise removing results in Band 2 of the EO-1 data real experiments.

Fig. 15. Noise removing results in Band 3 of the Zhuhai-1 data real experiments.
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Q-metric is, the better denoising result is. Compared with model-driven
and data-driven based approaches, the proposed method manifests the
HSI non-i.i.d. noise removing ability, by means of the combination of
both model-driven and data-driven strategy.

(7) Time-consuming: To measure the execution efficiency by
above-mentioned six HSI denoising methods, the consuming times of
the five data sets are collected through the uniform executing condi-
tions (Operating system: Windows 10, MATLAB R2018a, Python 3.7.0,
CPU: Intel E5-2609, GPU: NVIDA TITAN X), as depicted in Table 4.
Compared with model-driven based approaches like LRMR or NMoG,
the presented approach manifests great superiority in terms of proces-
sing efficiency for HSI denoising. Comprehensively, the proposed
method shows the high efficiency due to the superiority of data-driven
strategy.

5. Conclusion

In this work, a novel deep spatio-spectral Bayesian posterior
(DSSBP) framework in HSI is proposed for non-i.i.d. noise removal. The
proposed method unites intrinsic merits of both model-driven and data-
driven methods through collaboratively models the non-i.i.d. noise
embedding in HSI and removals them under the spatio-spectral
Bayesian posterior structure. Specifically, the noise modeling and re-
moving procedure are both executed with the spatio-spectral convolu-
tional neural network. Experiments on different HSI non-i.i.d. noise
scenarios testify that the presented approach outperforms other con-
trastive algorithms for hybrid noise removal.

In our future work, we will exploit the low-rank constraint of 3-D
tensor, to better model the complicated noise structure in HSIs. Besides,
the efficiency of the presented framework needs to be further enhanced
under complex noise scenario.
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