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A B S T R A C T

Wildfires frequently occur around the world, which seriously threaten the ecology, environment, economic
development, even human safety. In this work, we propose a novel framework for near-real-time and early-
stage wildfire detection using Himawari-8 satellite 10-min data. Different from most of the existing methods,
the proposed framework jointly combines spatial, temporal and spectral information for wildfire detection.
The integrated time-series spatial variance, temporal difference and spectral difference can comprehensively
judge the wildfire points and exclude disturbed points. Dispense with cloud detection and setting too many
manual thresholds, a spatial–temporal–spectral recurrent neural network (STS-RNN) is developed to adaptively
learn the time-series spatial–temporal–spectral curves. Compared with JAXA’s wildfire products, the proposed
framework can more accurately detect the small, early-stage, day-time, night-time and forest wildfire points
in three experimental scenarios. Especially for the early-stage wildfire detection, the proposed framework may
provide the rapid alarm for the local fire department and emergency management agency. This greatly breaks
through the limitations of existing wildfire detection methods.
1. Introduction

Due to the natural or artificial causes, wildfires often occur espe-
cially in forest and grassland regions (Maffei et al., 2021). Most wild-
fires lead to serious economic damage, environmental pollution, public
health threats, even personal casualty (Chatzopoulos-Vouzoglanis et al.,
2023). If these wildfires grow stronger as time goes on, they will bring
about more unmanageable situations for fire extinction (Hu et al.,
2021). Therefore, how to reduce the hazard of wildfires through the
timely disposing is extremely urgent and significant. However, early-
stage wildfire is usually hard for detection, especially in depopulated,
mountainous and rugged regions. With the development of remote
sensing technology, geostationary satellites could provide a poten-
tial solution for near-real-time wildfire detection (Chen et al., 2022;
Yu et al., 2022b). The crucial advantages of geostationary satellites
are listed below. Firstly, geostationary satellite could effectively ob-
serve large-area, which captures the 2-D spatial information of surface
land (Llorens et al., 2021; Yu et al., 2022a). Secondly, geostationary
satellites are equipped with the multi-spectral sensors, which provide
various spectral information including visible, near-infrared, middle-
infrared and far-infrared spectrums. Thirdly, geostationary satellites
devote themselves to high-frequency observation, which could generate
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sequential and near-real-time temporal information (Xiao et al., 2022;
Zhang et al., 2023b).

Taking the Himawari-8 geostationary satellite as an example, it
carries the Advanced Himawari Imagers (AHI) for earth observation.
Compared with polar-orbit satellites (temporal resolution: 1∼16 day),
Himawari-8 geostationary satellite could acquire all-time and high-
frequency data with 10-min temporal resolution. Besides, AHI sensor
can offer 16 bands (from 0.455 μm to 13.3 μm wavelength) for appli-
cations. Himawari-8 satellite has been widely worked on atmosphere,
ocean and land observation (Yu et al., 2021).

In recent years, plenty of literatures have utilized satellite data for
wildfire detection. According to the information type, these wildfire
detection algorithms could be classified into three categories: spatial-
based, temporal-based and spectral-based methods. Detailed descrip-
tions and analyses are listed as follows:

(a) Spatial-based methods: Spatial-based methods (also named
contextual methods) are the most common strategy for satellite wildfire
detection. These methods utilize the brightness temperature difference
between fire pixels and corresponding background pixels to detect
fires (Liew, 2019; Chen et al., 2017). The fire thresholds are usually
569-8432/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.jag.2023.103506
Received 28 March 2023; Received in revised form 20 September 2023; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2 September 2023

https://www.elsevier.com/locate/jag
http://www.elsevier.com/locate/jag
mailto:yqiang86@gmail.com
https://doi.org/10.1016/j.jag.2023.103506
https://doi.org/10.1016/j.jag.2023.103506
http://creativecommons.org/licenses/by/4.0/


International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103506Q. Zhang et al.

t
e
b
t
2

d
D
w
g
o
d

v
t
b
o

c
t
H
t
s
a

a
m

calculated by the spatial statistics (such as mean value, standard devi-
ation, square deviation and so on) in the background window (Wang
et al., 2022; Zhang et al., 2022).

Generally, the spatial-based methods are simple, quick and easy
to operate for wildfire detection. Nevertheless, due to the spatial het-
erogeneity, geographical location, weather and other factors, these
spatial-based methods are unstable and unreliable especially for small
fire and early-stage fire detection.

(b) Temporal-based methods: The temporal-based methods utilize
he brightness temperature of adjacent time to detect wildfire (Yan
t al., 2020). When the temporal difference between the observed
rightness temperature and predicted brightness temperature exceeds
he threshold, which indicates that there is a fire point (Hally et al.,
019).

The temporal-based methods take advantage of the high-frequency
ata offered by geostationary orbital sensors (Viana-Soto et al., 2022;
e Marzo et al., 2021). Hence, they can detect the near-real-time
ildfire. Moreover, these methods are not affected by spatial hetero-
eneity. However, when the observed pixels are contaminated by cloud
r smoke, the time-series data is usually difficult to exploit for wildfire
etection (Xie et al., 2018; Zhang et al., 2021b, 2020).
(c) Spectral-based methods: The spectral-based methods take ad-

antage of the spectral differences between different bands to detect
he wildfire (Zhang et al., 2019). The spectral difference between MIR
and and TIR band of the fire pixels is significantly greater than that
f non-fire pixels.

Overall, the spectral-based methods could fully exploit the spectral
haracteristics of wildfire points, which distinguish the fire points from
he other ground objects (Xu and Zhong, 2017; Rahmi et al., 2020).
owever, these methods require more prior knowledge and are difficult

o set adaptive thresholds (Zhang et al., 2021a, 2023a). In addition, the
pectral-based methods are easily disturbed by clouds, which severely
ffects the accuracy of wildfire detection (Zhang et al., 2018).

In summary, above three methods can effectively capture the char-
cteristics of early wildfire from different angles. Nevertheless, these
ethods still exist inherent shortages and limitations. Therefore, could

we jointly utilize spatial, temporal and spectral information for Himawari-8
near-real-time wildfire detection? In addition, could we implement early-
stage wildfire detection, which is extremely significant for the local fire
department and emergency management agency? What is more, could we
develop a self-adaptive algorithm, instead of setting too many manual
parameters for wildfire detection?

From these perspectives, we propose a novel machine learning
framework for Himawari-8 near-real-time and early-stage wildfire de-
tection. The main contributions are listed as follows.

• The proposed framework jointly combines spatial, temporal and
spectral information for Himawari-8 10-min near-real-time wild-
fire detection. The integrated time-series spatial variance, tempo-
ral difference and spectral difference can comprehensively judge
the wildfire points.

• A spatial–temporal–spectral recurrent neural network (STS-RNN)
is developed in the proposed wildfire detection framework. STS-
RNN can adaptively learn the time-series curves and predict the
next values. Wildfire pixels are determined by the differences
between actual features and predicted features.

• Dispense with cloud detection and setting too many manual
thresholds, the proposed STS-RNN model performs stably for
different wildfire types. The small wildfire, early-stage wildfire,
day-time wildfire, night-time wildfire and forest wildfire can all
be detected through the proposed framework.

• Compared with JAXA’s wildfire products, STS-RNN can more
accurately detect the early-stage and small wildfire points. This
greatly breaks through the limitations of existing wildfire detec-
tion methods, which may provide the rapid alarm for the local
fire department and emergency management agency.
2

The reminder content of this work is organized below. Section 2
gives the related data description of Himawari-8 AHI. Section 3 de-
picts the proposed wildfire detection methodology. Section 4 carries
out three different wildfire detection experiments. Finally, Section 5
summarizes a brief conclusion of this work.

2. Data description

2.1. Himawari-8 satellite AHI data

In this work, we utilize Himawari-8 satellite AHI data as the pro-
cessing object, its spatial resolution is 2 km. Himawari-8 satellite was
launched in 2014, which was designed by Japan Aerospace Exploration
Agency (JAXA). Himawari-8 satellite is the third generation of geosta-
tionary satellite for earth observation (Bessho et al., 2016). It mainly
covers the areas of east Asia and Australia (60◦S∼60◦N, 80◦E∼160◦W),
as shown in Fig. 1. The AHI sensor is onboarded at Himawari-8, which
can receive 16 bands (six albedo bands and ten brightness temperature
bands).

2.2. Wildfire validation

For validating the effectiveness of wildfire results, we compare the
proposed method with JAXA’s level-2 10-min wildfire products. The
spatial resolution of JAXA’s level-2 10-min products is 2 km. Hot-spots
are detected via a contextual threshold algorithm, based on MIR and
TIR bands in Himawari-8 AHI data. It provides the fire radiative energy,
reliability and wildfire position in level-2 products.

In addition, we acquire the accurate occurred-time and position
from official’s wildfire investigation reports. Wildfire detection could
be validated through above precise information.

3. Methodology

3.1. Overview

For wildfire pixel, it has three typical characteristics. As shown in
Fig. 2. Time-series spatial variance, temporal difference and spectral
difference are generated via the time-series BT07 and BT14 information
(𝑇1∼𝑇𝑘). Then, if the previous moment 𝑇𝑘−1(𝑥, 𝑦) is not wildfire pixel,
the proposed framework carries out the early-stage wildfire detection.
Otherwise, the proposed framework executes the continuous wildfire
detection. Later, STS-RNN is put forward to exploit the jointly spa-
tial, temporal, and spectral information. STS-RNN model determines
the wildfire pixels and generates the near-real-time wildfire products.
Subsequently, the proposed framework performs the next moment (𝑘 =
𝑘 + 1) and updates related values for Himawari-8 wildfire detection.

3.2. Spatial–temporal–spectral information

Firstly, the spatial variance making the spatial characteristics of
wildfires more prominent. Secondly, using spectral difference infor-
mation can sensitively capture wildfires and reduce interference from
factors such as clouds and fog. Finally, temporal difference can enhance
the sensitivity of the model to wildfires. To sum up, by integrating
spatial, temporal, and spectral information, our method can effectively
reduce the impact of spatial heterogeneity, geographical location and
other factors, and eliminate the interference of clouds and smoke. At
the same time, the proposed method avoids setting too many thresh-
olds. It can effectively improve the accuracy of wildfire detection and
the robustness of the algorithm.
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Fig. 1. Observation areas of Himawari-8 geostationary satellite and the selected experimental scenarios.

Fig. 2. Proposed framework for Himawari-8 near-real-time and early-stage wildfire detection.
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3.2.1. Spatial information
For BT07 band, the spatial value of wildfire pixel is obviously higher

than its neighborhood regions. Based on this principle, we calculate the
spatial variance (𝑆𝑉 ) to reflect the spatial information of wildfire pixel:

𝑆𝑉 𝑘 = 𝐵𝑇 𝑘
07(𝑥, 𝑦) −

∑

𝑖≠𝑥,𝑗≠𝑦 𝐵𝑇
𝑘
07(𝑖, 𝑗)

(2𝑁 + 1)2 − 1
(1)

here 𝑘 stands for the 𝑇𝑘 moment in Himawari-8 AHI data. Where (𝑥, 𝑦)
s the pixel position. 𝑁 represents the distance size. Excluding the cen-
ral pixel can amplify the deviation and improve the wildfire detection
ccuracy for the proposed method. Through stacking each spatial vari-
nce as a time-series curve, we acquire the time-series spatial variances,
hich could be fully exploited by the subsequent STS-RNN model.

.2.2. Temporal information
Relied on the high temporal resolution, Himawari-8 could distin-

uish tiny and imperceptible changes. In terms of wildfire detection, we
ogically introduce the temporal information into the proposed frame-
ork. For the time-series BT07 band (𝑇1∼𝑇𝑘), the temporal difference

is derived below:

𝑇𝐷𝑘 = 𝐵𝑇 𝑘
07(𝑥, 𝑦) − 𝐵𝑇 𝑘−1

07 (𝑥, 𝑦) (2)

f a wildfire occurs at 𝑇𝑘, its temporal difference obviously increases
o a large extent. In other words, the temporal difference reflects
he gradient of time-series BT07. Therefore, we could employ this
haracteristic for Himawari-8 wildfire detection. Then the time-series
emporal difference curve is imported into the posterior STS-RNN
odel.

.2.3. Spectral information
Himawari-8 satellite simultaneously captures the MIR band (BT07,

.9 μm) and TIR band (BT14, 11.2 μm). MIR band is highly sensitive to
he hot fire, while TIR band is stable to the variation of land surface
emperature. Relied on this intrinsic characteristic, Himawari-8 satellite
ould effectively perceive wildfires. Thus, the spectral information is
eaded into the proposed framework:

𝐷𝑘 = 𝐵𝑇 𝑘
07(𝑥, 𝑦) − 𝐵𝑇 𝑘

14(𝑥, 𝑦) (3)

here 𝑆𝐷 denotes the spectral difference between BT07 and BT14.
hrough stacking each spectral difference as a time-series vector, we
cquire the time-series spectral difference curve for wildfire detec-
ion. This time-series curve reveals salient abnormity, which could be
dequately utilized by the subsequent STS-RNN model.

.3. Early-stage/continuous wildfire detection

Generally, a wildfire pixel could be divided into two types: early-
tage and continuous wildfire detection. For the early-stage wildfire,
he time-series spatial variance, temporal-difference and time-series
pectral difference curves usually perform smooth before the wildfire
ccurs. In contrast, these time-series curves will suddenly rise for the
arly-stage wildfire. Then the proposed framework directly inputs the
patial–temporal–spectral information for the STS-RNN predict model,
s described in Fig. 2.

Nevertheless, for the continuous wildfire, the temporal difference
ay be negative after the wildfire occurs a period of time, due to the

ontinuous high-temperature in BT07. Hence, we bring in a filtering
olution to ensure the robustness of continuous wildfire detection. For
urrent moment 𝑇𝑘(𝑥, 𝑦), if the previous moment 𝑇𝑘−1(𝑥, 𝑦) is a wildfire
ixel, the spatial variance, temporal difference, and spectral difference
t 𝑇𝑘−1 are all replaced by the predicted values of STS-RNN model.
hrough this strategy, we can effectively exclude pre-existing wildfire
4

oints for continuous wildfire detection. p
3.4. STS-RNN predict model

After the judgment and preprocessing of early-stage or continuous
wildfire, the time-series spatial variance, temporal difference and spec-
tral difference curves are imported into the STS-RNN predict model,
respectively. RNN can effectively exploit the consistency and variability
of time-series vector. In the proposed wildfire detection framework,
the structure of STS-RNN model is given in Fig. 3(a). For the time-
series vector [𝑋1, 𝑋2 …𝑋𝑘−2, 𝑋𝑘−1, 𝑋𝑘] in STS-RNN model, 𝑋𝑘 is the
value of current target point at the moment 𝑘. It can be represented
as the spatial variance, temporal difference or spectral difference,
respectively.

As depicted in Fig. 3(a), the overall structure of the STS-RNN model
is composed of three parts: input layer, hidden layer, and output layer.
In the input layer, STS-RNN model utilizes the time-series vector as
input elements. In the hidden layer, STS-RNN model estimates current
hidden node via both current input value and the last hidden node.
In the output layer, STS-RNN model exports the predicting output via
the corresponding hidden node. At time step 𝑡, the hidden node is
determined as:

𝐻𝑡 = 𝜎(𝑋𝑡 ∗ 𝑈 +𝑊 ∗ 𝐻𝑡−1) (4)

where 𝜎 stands for the activation function. Then the predicting output
𝑌𝑡 is denoted as:

𝑌𝑡 = SoftMax(𝑉 ∗ 𝐻𝑡) (5)

where 𝑈 , 𝑉 and 𝑊 represent the weight parameters for input layer,
output layer and hidden layer, respectively. Apparently, current hidden
node is simultaneously influenced by the corresponding input value
and previous hidden node. So, STS-RNN model could effectively fit the
time-series curve. It adaptively exploits the sequential relationship via
self-spatial, temporal and spectral information. Notably, we employ the
existing time-series curve (moment 1 to 𝑘 − 1) to train the STS-RNN
model. For current moment 𝑘, STS-RNN model estimates the predicted
value in Fig. 3(b). The deviations between actual values and predicted
values of spatial variance, temporal difference and spectral difference
are calculated as follows:

𝐷𝑒𝑣𝑘𝑆𝑉 = 𝑆𝑉 𝑘
𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑆𝑉 𝑘

𝑃 𝑟𝑒𝑑 (6)

𝐷𝑒𝑣𝑘𝑇𝐷 = 𝑇𝐷𝑘
𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑇𝐷𝑘

𝑃 𝑟𝑒𝑑 (7)

𝐷𝑒𝑣𝑘𝑆𝐷 = 𝑆𝐷𝑘
𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑆𝐷𝑘

𝑃 𝑟𝑒𝑑 (8)

where 𝑆𝑉 𝑘
𝑃 𝑟𝑒𝑑 , 𝑇𝐷𝑘

𝑃 𝑟𝑒𝑑 and 𝑆𝐷𝑘
𝑃 𝑟𝑒𝑑 are the predicted values of STS-RNN

model. Then the proposed framework determines the wildfire point
through the integrated spatial–temporal–spectral view:

𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑓𝑖𝑟𝑒 = 𝐷𝑒𝑣𝑘𝑆𝑉 > 𝛼 ∗ 𝑀𝑎𝑥(
𝑘−1
𝛤
𝑡=1

(𝐷𝑒𝑣𝑡𝑆𝑉 ))
⋂

𝐷𝑒𝑣𝑘𝑆𝑉 ≥ 𝛽 (9)

𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑓𝑖𝑟𝑒 = 𝐷𝑒𝑣𝑘𝑇𝐷 > 𝛼 ∗ 𝑀𝑎𝑥(
𝑘−1
𝛤
𝑡=1

(𝐷𝑒𝑣𝑡𝑇𝐷))
⋂

𝐷𝑒𝑣𝑘𝑇𝐷 ≥ 𝛽 (10)

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝑓𝑖𝑟𝑒 = 𝐷𝑒𝑣𝑘𝑆𝐷 > 𝛼 ∗ 𝑀𝑎𝑥(
𝑘−1
𝛤
𝑡=1

(𝐷𝑒𝑣𝑡𝑆𝐷))
⋂

𝐷𝑒𝑣𝑘𝑆𝐷 ≥ 𝛽 (11)

here 𝑀𝑎𝑥(
𝑘−1
𝛤
𝑡=1

(𝐷𝑒𝑣𝑡𝑆𝐷)) denotes the maximum deviation for previous
oment. 𝛼 and 𝛽 stand for the scale factor and bias threshold. If

hese three deviations are together larger than the setting thresholds, it
sually satisfies the characterize of wildfire point. For the early-stage
ildfire detection, the judging criterion is defined below:

𝑛𝑑𝑒𝑥 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑓𝑖𝑟𝑒
⋂

𝑇 𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑓𝑖𝑟𝑒
⋂

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝑓𝑖𝑟𝑒 (12)

For the continuous wildfire detection, the judging criterion is de-
ided below:

𝑛𝑑𝑒𝑥 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑓𝑖𝑟𝑒
⋂

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝑓𝑖𝑟𝑒 (13)

here 𝐼𝑛𝑑𝑒𝑥 refers to the Boolean flag (‘‘True’’ is fire and ‘‘False’’ is
on-fire) for wildfire detection. After finishing current moment 𝑘, the

roposed framework carries out the next moment (𝑘 = 𝑘 + 1).
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Fig. 3. Structure of STS-RNN predict model and predicted time-series curve (spectral difference).
Table 1
The confusion matrix of actual/predicted fire or non-fire.

Predicted fire Predicted non-fire

Actual Fire 𝑎 𝑏
Actual Non-Fire 𝑐 𝑑

3.5. Training data

In our experiment, long-term 10-minute time-series data are used
for training. STS-RNN can use these time-series curve data for model
self-supervised optimization through time series recursion. It can make
full use of the high correlation in long-term curve, to continuously
update the training data. The training data used by the proposed
model includes three kinds: Spatial, temporal and spectral information.
Detailed description is provided in chapter 3.2.

3.6. Training method

STS-RNN model could effectively fit the time-series curve. It adap-
tively exploits the sequential relationship via self-spatial, temporal and
spectral information. Meanwhile, STS-RNN uses the loss function to
optimize the model. The loss function for self-supervised optimization
is given in Eq. (14) (Zhang et al., 2021c):

𝜉 = 1
2(𝑘 − 1)

𝑘−1
∑

𝑡=1

‖

‖

𝑌𝑡 −𝑋𝑡
‖

‖

2
2 (14)

where 𝑌𝑡 and 𝑋𝑡 represent the predicting and true value at time step
𝑡, respectively. In our validation experiment, the epoch number is set
as 500 for model optimization. The learning rate is denoted as 0.01 for
back propagation and gradient descent.

3.7. Parameters setting and evaluation indexes

After multiple parameter adjustments, we found that 𝑁=7 can well
reflect the statistical characteristics of spatial information, so 𝑁 is set
as 7. The scale factor 𝛼 and bias threshold 𝛽 in Eqs. (9) to (11) are
fixed as 2 and 1, respectively. These parameters can more sensitively
capture the occurrence of early wildfire. The wildfire detection results
show that these thresholds can adapt well to different regions. In the
future, we will study the early wildfire detection method with adaptive
parameters for different scenarios. In terms of network training, the
epoch number is set as 500 for STS-RNN model optimization. The
learning rate is denoted as 0.01 for back propagation and gradient
descent (see Table 1).

Firstly, we define the true fire point. Definition of true fire point is
manually determined by judging the brightness temperature of the 7th
band, and combining with the visible image.
5

With respect to the quantitative evaluation for wildfire detection,
we utilize five evaluation indexes below: fire accuracy (FA), overall
accuracy (OA), early-fire accuracy (EFA), false-alarm rate (FAR) and
omission-fire rate (OFR). The confusion matrix of actual and predicted
fire or non-fire is listed in Table 1. Relied on this confusion matrix, FA,
OA, FAR and OFR indexes are defined as follows:

FA = 𝑎
𝑎 + 𝑏

(15)

OA = 𝑎 + 𝑑
𝑎 + 𝑏 + 𝑐 + 𝑑

(16)

FAR = 𝑐
𝑎 + 𝑐

(17)

OFR = 𝑏
𝑎 + 𝑏

(18)

In addition, we specially use the EFA index to testify the detection
ability of early-stage wildfire. This may provide the rapid alarm for
the local fire department and emergency management agency. The EFA
index is defined below:

EFA =
𝐸𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝐸𝐹𝑎𝑙𝑙
(19)

where 𝐸𝐹𝑎𝑙𝑙 represents the number of all the actual early-stage wildfire
points. 𝐸𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡 refers to the number of all the predicted early-stage
wildfire points. For FA, OA and EFA indexes, the higher these values
are, the better the wildfire detection effects behave. Oppositely, for FAR
and OFR indexes, the lower these values are, the better the wildfire
detection effects behave. The experimental results are demonstrated
below.

4. Results

(a) Jiamusi forest wildfire (2018.04.25)
In this experimental scenario, we perform on the small wildfire

detection. The position and time are available in the satellite-earth
synchronous observation experiment by the national satellite meteo-
rological center. As shown in Fig. 4, an artificial straw burning site is
carried out in Huachuan county, Jiamusi city, Heilongjiang province,
China (46.7◦N, 130.4◦E). The burning time starts from 05:30 (UTC
Time) to 07:00, in April 25, 2018.

As portrayed in Fig. 5(a), the time-series BT07 and BT14 curves at
position (46.72◦N, 130.42◦E) of Himawari-8 AHI 10-min dataset are
given from UTC time 00:00 to 09:00 in April 25, 2018. The red line
and green line refer to the time-series BT07 curve and BT14 curve,
respectively. The spectral difference between the two curves is covered
with pink color. Obviously, starting from 05:40 to 06:20, the BT07
values behave abnormal due to the hot sensitivity.

In addition, the time-series spatial variance, temporal difference
and spectral difference curves are revealed in Fig. 5(b), respectively.
Similarly, these curves suddenly shake to different degree when the
wildfire occurs at UTC time 05:40. The evaluation index comparison
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Fig. 4. Jiamusi forest wildfire satellite image and spot.
Fig. 5. Curves at position (46.72◦N, 130.42◦E), from UTC time 0:00 to 9:00 in April 25, 2018. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
.

between the JAXA WLF L2 products and proposed method is listed in
Table 2. The optimal indexes are marked with bold format.

As contrasted in Table 3, JAXA WLF L2 products perform poor
on small wildfire detection, whose FA index is just 16.35%. These
products omit 83.65% small wildfire points in this wildfire scenario. In
comparison, the proposed method generates reliable wildfire detection
results. These results validate the availability and robustness of the
proposed wildfire detection framework.
6

Table 2
Evaluation index comparison between the JAXA WLF L2 products and proposed method

Index FA (↑) OA (↑) EFA (↑) FAR (↓) OFR (↓)

JAXA WLF L2 Products 16.35% 96.84% 28.57% 0.13% 83.65%
Proposed method 87.29% 98.57% 85.71% 0.14% 12.71%
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Fig. 6. 10-min time-series 𝐵𝑇07 (Top row), JAXA WLF L2 products (Middle row) and wildfire detection results of the proposed method (Bottom row).
Fig. 7. Xichang forest wildfire satellite image and spot.
.

The 10-min time-series 𝐵𝑇07, JAXA WLF L2 products and wildfire

detection results of the proposed method are displayed in Fig. 6. For
the early wildfire at 05:40, JAXA WLF L2 products cannot detect the
wildfire pixels. These products only monitor single hot point until 06:00
in the middle row of Fig. 6. In comparison, the proposed method can
accurately detect the early-stage fire in the bottom row of Fig. 6.
(b) Xichang forest wildfire (2020.03.30)

Xichang forest wildfire occurred at UTC time 07:51, March 30,
2020, in Jingjiu town, Xichang city, Sichuan province, China (location:
27.8◦N, 102.2◦E). The satellite image and spot image of Xichang forest
wildfire are shown in Fig. 7(a) and (b), respectively. Official statistics
declared that Xichang forest wildfire resulted in 19 deaths (firefighters).

As displayed in Fig. 8(a), the time-series 𝐵𝑇07 curve and 𝐵𝑇14 curve
at position (27.84◦N, 102.18◦E) are given from UTC time 00:00 to
10:00 in March 30, 2020. At day-time, the brightness temperature of
𝐵𝑇 and 𝐵𝑇 firstly increase, and then decrease smoothly due to the
7

07 14
Table 3
Evaluation index comparison between the JAXA WLF L2 products and proposed method

Index FA (↑) OA (↑) EFA (↑) FAR (↓) OFR (↓)

JAXA WLF L2 Products 6.53% 97.14% 0.00% 0.01% 93.47%
Proposed method 94.27% 98.82% 93.33% 0.02% 5.73%

solar radiation and altitude variation in Fig. 8(a). Nevertheless, starting
from UTC time 07:50, the spectral difference between 𝐵𝑇07 and 𝐵𝑇14
band is increasingly expansile in Fig. 8(a), which indicates the existence
of a wildfire pixel.

The time-series spatial variance, temporal difference and spectral
difference curves are revealed in Fig. 8(b), respectively. The evaluation
index is listed in Table 3.

As comparison in Table 3, JAXA WLF L2 products perform poor
on early-stage wildfire detection, whose FA and EFA indexes are only
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Fig. 8. Curves at position (27.84◦N, 102.18◦E), from UTC time 00:00 to 10:00 in March 30, 2020.
.

6.53% and 0.00%. In comparison, the proposed method generates
reliable wildfire detection results. These results testify the practicability
and capacity of the proposed framework.

For Xichang forest wildfire, the 10-min time-series 𝐵𝑇07, JAXA WLF
L2 products and wildfire detection results of the proposed method
are revealed in Fig. 9. For the early wildfire from 07:50 to 08:10,
JAXA WLF L2 products cannot detect any wildfire pixels. As shown
in the middle row of Fig. 9. In comparison, the proposed method can
effectively detect the early-stage fire in the bottom row of Fig. 9. These
results adequately manifest the superiority of the proposed framework
for distinguishing the small and early-stage wildfire.

(c) Korea forest wildfire (2022.03.04)
Korea forest wildfire occurred at UTC time 02:17, March 04, 2022,

in Uljin-gun, Gyeongsangbuk-do, Korea (location: 37.1◦N, 129.3◦E).
The satellite image and spot of Korea forest wildfire are visualized in
Fig. 10(a) and (b), respectively.

As shown in Fig. 11(a), the time-series 𝐵𝑇07 and 𝐵𝑇14 curves at
position (37.04◦N, 129.28◦E) are given from UTC time 22:00 to 07:00
in March 03 and 04, 2022. The spectral difference between 𝐵𝑇07
nd 𝐵𝑇14 band is quickly expansile in Fig. 11(a), which indicates the
xistence of a wildfire pixel.

Furthermore, the time-series spatial variance, temporal difference
nd spectral difference curves are displayed in Fig. 11(b), respectively.
he evaluation index is listed in Table 4.

As comparison in Table 4, both the JAXA WLF L2 products and
roposed method generates satisfactory wildfire detection results for
orea forest wildfire. However, JAXA WLF L2 products perform poor
n small fire and early-stage fire, which only achieve 41.86% FA index,
2.77% EFA index and 58.14% OFR index.
8

Table 4
Evaluation index comparison between the JAXA WLF L2 products and proposed method

Index FA (↑) OA (↑) EFA (↑) FAR (↓) OFR (↓)

JAXA WLF L2 Products 41.86% 98.53% 52.77% 0.01% 58.14%
Proposed method 93.27% 99.12% 91.06% 0.02% 6.73%

The 10-min time-series 𝐵𝑇07, JAXA WLF L2 products and Korea
forest wildfire detection results of the proposed method are displayed
in Fig. 12. As shown in the two last columns of Fig. 12, the proposed
method can more accurately distinguish the fire pixels than JAXA WLF
L2 products.

5. Discussion

5.1. Validation with medium-resolution satellite

To verify the accuracy of the wildfire detection results, we compare
them with medium resolution satellite images (Tyukavina et al., 2022).

As shown in Fig. 13, the image of Sentinel-2 shows Korea forest
wildfire scence, at UTC time 02: 07 in March 05, 2022. It was captured
within a day after the fire occurred. The coordinate of the red marked
point is 37.04◦ N, 129.27◦ E, which is also the wildfire detection
point via the proposed method. From this image, it can be validated
that there is indeed an obvious wildfire at the location where we
detected the wildfire. This also proves the reliability of STS-RNN via
medium-resolution satellite.
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Fig. 9. 10-min time-series 𝐵𝑇07 (Top row), JAXA WLF L2 products (Middle row) and wildfire detection results of the proposed method (Bottom row).
Fig. 10. Korea forest wildfire satellite image and spot.
5.2. Discussion of experimental results

In the results section, we conducted research on two fire scenarios.
For small fires, due to the use of contextual algorithms in the JAXA WLF
L2 products, the sensitivity to small fires is poor, resulting in a high rate
of missed detections. The proposed method effectively improves the de-
tection accuracy of small fires by integrating spatial–temporal–spectral
information. For large-scale forest fires, the JAXA WLF L2 products
have poor detection performance for early wildfires. On the contrary,
the proposed method obtains reliable wildfire detection results. In
summary, compared to the JAXA WLF L2 products, our method can
adapt to different fire scenarios and achieve higher detection accuracy.

5.3. Analysis of causes

Firstly, wildfire thresholds are usually calculated through spatial
statistical information in the background window (Wang et al., 2022).
9

Therefore, small fires in some scenarios may be missed due to the
inability to reach above thresholds. This is also the main reason for the
high omission rate of JAXA WLF L2 products in small fire scenarios.
Secondly, the temporal-based methods take advantage of the high-
frequency data offered by geostationary orbital sensors (De Marzo et al.,
2021). It allows us to detect wildfires in near real-time. This is the main
reason why our method can detect fires in the early stages. Finally, the
spectral-based methods could fully exploit the spectral characteristics of
wildfire points, which distinguish the fire points from the other ground
objects (Rahmi et al., 2020). Using this information can improve the
fire detection accuracy.

From the experimental results, by integrating spatial–temporal–
spectral information, our method not only has superior detection abil-
ity in small fires, but also significantly improves overall detection
accuracy, especially in early wildfire detection.
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Fig. 11. Curves at position (37.04◦N, 129.28◦E), from UTC time 22:00 to 07:00 in March 03 and 04, 2022.

Fig. 12. 10-min time-series 𝐵𝑇07 (Top row), JAXA WLF L2 products (Middle row) and wildfire detection results of the proposed method (Bottom row).
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Fig. 13. Korea forest wildfire satellite image of Sentinel-2 satellite. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 14. Discussion in cloudy scenarios for wildfire detection.
5.4. Discussion for cloudy scenarios

To illustrate how these curves change when a pixel changes from
being covered by cloud to being clear. We take the center cloud pixel
as (27.56◦ N, 103.91◦ E) and the time period from 03:50 to 10:00 UTC
on March 30, 2020. As shown in Fig. 14, the pixel experienced three
situations: from cloud to clear, maintaining cloud coverage, and from
clear to cloud. At the moment of cloud coverage or cloud change, there
are significant change for temporal difference or spectral difference
in Fig. 14. In our experiment, we jointly utilize spatial, temporal and
spectral information for Himawari-8 near-real-time wildfire detection,
only if the temporal–spatial–spectral information meets all the compre-
hensive judgments, the object pixel could be judged as an early wildfire
point.

Through the spatial variance, temporal difference and spectral dif-
ference, STS-RNN reduces the interference caused by cloud coverage
or cloud change. Relied on these advantages, STS-RNN could achieve
fast, robust and effective early-stage wildfire detection results, without
additional cloud detection for Himawari-8 AHI data.
11
6. Conclusion

In this paper, we propose a novel machine learning framework
for Himawari-8 near-real-time and early-stage wildfire detection. The
proposed framework utilizes spatial, temporal and spectral information
for wildfire detection. An STS-RNN model is developed to exploit the
time-series spatial variance, temporal difference and spectral difference
curves and determine the wildfire pixels. Dispense with cloud detection
and setting too many manual thresholds, the proposed framework
performs well for different wildfire types and scenarios. Compared with
JAXA’s wildfire products, the proposed framework behaves more excel-
lent on early-stage and small wildfire detection, at the cost of small false
positives. This can send out the early warning of the potential wildfire,
which may provide the rapid alarm for the local fire department and
emergency management agency.

In our future work, we will further improve the spatial, temporal
and spectral features for early-stage wildfire detection. Moreover, the
wildfire detection platform will be established for practical applica-
tions.
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