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A B S T R A C T

Wildfires pose a great threat to the ecological environment and human safety. Therefore, rapid and accurate 
detection of wildfires holds significant importance. However, existing wildfire detection methods neglect the full 
integration of spatial–temporal relationships across different scales, and thus suffer from issues of low robustness 
and accuracy in varying wildfire scenes. To address this, we propose a deep learning model for near-real-time 
wildfire detection, where the core idea is to integrate multi-scale spatial–temporal features (MSSTF) to effi-
ciently capture the dynamics of wildfires. Specifically, we design a multi-kernel attention-based convolution 
(MKAC) module for extracting spatial features representing the differences between fire and non-fire pixels 
within multi-scale receptive fields. Moreover, a long short-term Transformer (LSTT) module is used to capture 
the temporal differences from the image sequences with different window lengths. The two modules are com-
bined into multiple streams to integrate the multi-scale spatial–temporal features, and the multi-stream features 
are then fused to generate the fire classification map. Extensive experiments on various fire scenes show that the 
proposed method is superior to JAXA Wildfire products and representative deep learning models, achieving the 
best accuracy scores (i.e., average fire accuracy (FA): 88.25%, average false alarm rate (FAR): 20.82%). The 
results also show that the method is sensitive to early-stage fire events and can be applied in the task of near-real- 
time wildfire detection with 10-minute Himawari-8/9 satellite data. The data and codes used in the study are 
detailed in: https://github.com/eagle-void/MSSTF.

1. Introduction

As one of the most serious extreme natural disasters, wildfires occur 
frequently all over the world, posing significant threats to agricultural 
production, air pollution, climate change, and human life and property 
safety (Rogers et al., 2015; Jethva et al., 2019; Guo et al., 2020; Zhang 
et al., 2023c). To minimize the losses caused by wildfires, the rapid and 
accurate detection of fire events across large ground areas holds sig-
nificant importance.

Satellite remote sensing has long been recognized for its macroscopic 
observation capabilities, which is a pivotal technique for wildfire 
detection (Xiao et al., 2016; Xiao et al., 2019; Hong et al., 2022; Yang 
et al., 2024). Among various types of satellites, geostationary satellites 

stand out for their high temporal resolution and stable capability of 
large-scale monitoring. Himawari-8/9 geostationary satellites are the 
third generation geostationary designed for the monitoring of weather 
and disasters, with significant improvements in frequency and resolu-
tion. Specifically, Himawari-8/9 satellites perform a high temporal 
resolution of up to 10 min, spanning East Asia and Southeast Asia region 
(Wickramasinghe et al., 2016; Liu et al., 2018). Moreover, the onboard 
Advanced Himawari Imagers (AHI) sensor provides abundant spectral 
information across 16 bands. Given the high temporal resolution and 
multi-spectral imaging, Himawari-8/9 satellites are the primary data 
source supporting high-frequency and detailed observation of wildfire 
events.

The dynamics of wildfires are influenced by the complex interactions 
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of physical factors, such as temperature, humidity, velocity and direc-
tion of wind, fuels and so on. As a result, the growth of wildfires is 
generally characterized by heterogeneous changes in spatial, temporal 
and spectral dimensions. Based on these facts, researchers have been 
devoted to propose abundant algorithms for wildfire detection based on 
remote sensing data (Xiao et al., 2019; Yang et al., 2024). Early attempts 
included the traditional threshold-based methods based on multi- 
temporal information (Filizzola et al., 2016; Hally et al., 2018, 2019; 
Yan et al., 2020) or spatial contextual information (Giglio et al., 2003; 
Liew, 2019; Parto et al., 2020; Wooster et al., 2012; Zhang et al., 2023b). 
Multi-temporal information threshold-based methods leverage the 
brightness temperature (BT) difference from different observation mo-
ments to detect wildfires (Laneve et al., 2006; van den Bergh et al., 2009; 
Xie et al., 2018; Yan et al., 2020). Considering the spatial information, 
contextual algorithms aim to find differences in context information, 
such as thermal characteristics and albedo, between active fire and its 
surrounding background pixels (Wooster et al., 2012; Chen et al., 2017; 
Liew et al., 2019). In the general cases, these methods also need the 
thresholds for spatial contrast information based on local statistics (e.g., 
average and standard deviation, and variance values) (Wickramasinghe 
et al., 2016; Xu and Zhong, 2017; Yan et al., 2020). Researchers also 
explored using adaptive-size windows around candidate fire pixel to 
improve the model’s generalization performance in different fire events 
(Giglio et al., 2016; Chen et al., 2022). The threshold-based methods are 
easy to be implemented and are widely used for wildfire detection with 
Himawari-8/9 data (Chen et al., 2021). However, it is always chal-
lenging to select appropriate thresholds to adapt to different wildfire 
cases with complex dynamic variations and spatial heterogeneity.

To enhance the accuracy and robustness of wildfire detection, deep 
learning has been introduced in wildfire detection as a robust spa-
tial–temporal modelling tool (Barmpoutis et al., 2020). Until recently, 
deep neural networks, e.g., Convolutional Neural Networks (CNNs) 
(Krizhevsky et al., 2012), Recurrent Neural Networks (RNNs) (Elman, 
1990), and Transformers (Ashish, 2017), have been employed in wild-
fire detection tasks (Majid et al., 2022; Zheng et al., 2024). These works 
demonstrate that effective learning of temporal and spatial information 
from remote sensing imagery is the key aspect of robust detection of 
wildfire. Over the past few years, the development of deep learning 
models has demonstrated significant potential in feature fusion for 
wildfire detection (Barmpoutis et al., 2020; Gong et al., 2021; Majid 
et al., 2022; Zhao et al., 2023; Zheng et al., 2024). Accordingly, re-
searchers explored learning of multi-dimensional features from geosta-
tionary satellite data to enhance detection performance. For example, 
Phan et al. (2020) and Hong et al., (2024) integrated spatial and tem-
poral features to detect wildfire in satellite images using deep neural 
networks. Furthermore, Kang et al. (2022) combined CNNs and random 
forest (RF) models to integrate multiple feature groups (i.e., spatial, 
temporal and spectral) for identifying fire pixels. Zhang et al. (2023c)
proposed a prediction model based on RNNs to learn the spa-
tial–temporal-spectral representations from Himawari-8 geostationary 
data, and achieved good results in study cases. These studies have pre-
liminarily demonstrated that the integration of multi-dimensional in-
formation is effective in enhancing fire detection accuracy. However, 
existing deep learning models generally neglect the full integration of 
spatial–temporal relationships across various scales, which is crucial for 
adapting to wildfires that exhibit diverse scale characteristics and 
growth patterns. It is then interesting to fully explore multi-scale spatial 
and temporal features to achieve robust detection results in various 
wildfire cases.

To address the above issues, we design a novel deep learning 
framework integrating multi-scale spatial–temporal features for wildfire 
detection. The major contributions can be summarized as: 

1) We propose a deep learning framework for near-real-time wildfire 
detection with Himawari-8/9 geostationary satellite data by 

integrating multi-scale spatial–temporal features to delineate the 
complex characteristics of wildfire events.

2) For highlighting the spatial differences of wildfire, we use a multi- 
kernel attention-based convolution (MKAC) module for extracting 
spatial features representing the difference of fire and non-fire pixels 
within multi-scale receptive fields.

3) To fully utilize the high-resolution temporal information contained 
in Himawari-8/9 geostationary satellite data, we design a long short- 
term Transformer (LSTT) module for learning multi-scale temporal 
features from the image sequences with different window lengths.

2. Study area and dataset

2.1. Study area

To cover a wider area, six representative forest fire events from the 
southwestern region of China are analyzed. Southwest China, known for 
its high forest coverage rate and rich ecosystem diversity, ranges from 
tropical rainforests to alpine forests. The influence of the monsoon 
climate results in scant rainfall during the dry season, contributing to a 
high incidence of wildfires. Furthermore, the complex terrain of the 
study area poses challenges for efficient fire response and rescue oper-
ations. Detailed information about the six fire events is presented in 
Fig. 1.

2.2. Himawari-8/9 satellite AHI data

Himawari-8/9 satellite is designed to provide near-real-time earth 
observations every 10 min. With a high temporal resolution, the 
Himawari-8/9 data can support applications in meteorology, environ-
mental monitoring, and natural disaster detection (Bessho et al., 2016). 
The satellite’s coverage includes East Asia and Australia, ranging from 
60◦S to 60◦N and 80◦E to 160◦W. The onboard AHI sensor is capable of 
capturing data across 16 spectral bands, comprising 3 visible bands, 3 
near-infrared (NIR) bands, and 10 infrared bands. The detailed infor-
mation about the bands of Himawari-8/9 AHI sensor used is presented in 
Table 1.

In this study, we employ Himawari-8/9 AHI data as the main data 
source. The Japan Meteorological Agency (JMA) offers two data formats 
for Himawari-8/9 AHI data, i.e., HSD and NetCDF4. We utilize the 10- 
minute full disk NetCDF4 data in the tests. Given the thermal sensi-
tivity difference of the MIR and LWIR bands (Dozier, 1981; Sullivan 
et al., 2003; Kaufman et al., 1998; Dennison et al., 2006), the BT07 and 
BT14 data from the Himawari-8/9 AHI dataset serve as the primary in-
puts for fire detection.

To address missing data due to the house-keeping of the Himawai-8 
and − 9 satellites (JAXA Himawari Monitor (P-Tree System), 2024) or 
major errors in the processing stage, we use the average value between 
the data achieved before and after the missing time to obtain seamless 
time series data within the time period for model training and testing. To 
deal with the cloud pixels, we employ a threshold-based algorithm to 
create a cloud mask (Zhang et al., 2023a). The cloud pixels are then 
excluded from the subsequent fire detection process, which aims to 
mitigate the false alarms caused by clouds. During the daytime, the 
cloud pixels are defined as follows: 

BT15 < 265K and R3 + R4 > 1.2 or
((R3 + R4 > 0.7) and (BT15 < 285K)) (1) 

For the night pixels, the cloud pixels are defined as follows: 

BT15 < 265K and BT07 < 285K (2) 

where R3 and R4 are reflectivity data of band 3 and band 4 of Himawari- 
8/9 satellite, and BT07 and BT15 is brightness temperature data of band 
7 and band 15 of Himawari-8/9 satellite.
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2.3. Experimental dataset

Current widely utilized active fire detection datasets, such as 
MCD14ML and MCD64A1 of MODIS, and VNP14DL of VIIRS, fall short 
of the high temporal and spatial resolution demands for active fire 
detection and monitoring (Wooster et al., 2021). Moreover, the existing 
satellite products often ignore small fires, leading to the omission of 
active fire events (Jones et al., 2022). For example, the JAXA Wild Fire 
(WLF) L2 products of Himawari-8/9 satellite use statistics of time series 
of BT difference between BT07 and BT14 to classify fire pixels. As shown 
in Fig. 2, JAXA WLF L2 products omit numerous true fire pixels. 
Therefore, we construct a manually annotated fire dataset as the ground 
truth for validation, to ensure a comprehensive assessment of the 
detection results. A visual example of the manual fire labels for Xichang 
fire is shown in Fig. 2.

Given the limited data amount of the manual samples, we further 

created a simulated training dataset for model training. For the gener-
ation of simulated data patches, we randomly selected N pixels as the 
fire seeds, and randomly label four to eight pixels within the 3 × 3 local 
neighbor of each seed pixel as fire pixels. Labeling the nearest pixels is 
aimed to simulate the actual fire diffusion, adhering to the physical 
characteristics of fire spread in the spatial dimension. After determining 
the location of fire pixels, we assign a random ignition time to each fire 
pixels, in order to extend the process of fire pixel marking to the tem-
poral dimension. Specifically, for labeled k fire pixels (xi, yi), i ∈
{1,2⋯, k} and their ignition time ti, i ∈ {1, 2, ⋯, k}, the rules for 
assigning characteristic value to them are as follows: 

BTdif(t, xi, yi) = BTdiffire , ti ≤ t ≤ T, i ∈ {1,2,⋯, k} (3) 

where T represents the length of the temporal dimension and BTdif fire 
represent the characteristic value of fire pixels based on statistical fea-
tures. For other unlabeled pixels, we regard them as non-fire pixels and 
assign BTdif non fire as their characteristic values. The feature values for 
fire and non-fire pixels are determined with the statistics from the 
manually true labels. Our statistic analysis encompasses a broad range of 
fire events, extending beyond those mentioned in this paper, and le-
verages the extensive time series data from Himawari satellite obser-
vations, which are free from fire occurrences. In this study, we utilize the 
BT07 − BT14 as the input feature for model training and choosing the 
feature values, and the value ranges of BTdif fire and BTdif non fire are set 
as [5, 35] and [0, 2], respectively. Therefore, we generate a customizable 
number of data with the size of (T,1,H,W) for training the detection 
model, where T represents the length of the temporal dimension. The 
generation process of the virtual dataset is shown in Fig. 3.

Fig. 1. Information about the study area.

Table 1 
Information about the bands of Himawari-8/9 AHI sensor used in this study.

Band Band type Center 
wavelength

Spatial 
resolution

Sensitive objects

3 Reflectivity 0.64 µm 0.5 km Land, clouds, etc.
4 0.86 µm 1 km Marine water color, 

phytoplankton, etc.

7 Brightness 
temperature

3.9 µm 2 km Surface temperature, 
cloud top temperature

14 11.2 µm 2 km Surface temperature, 
cloud top temperature

15 12.3 µm 2 km Surface temperature, 
cloud top temperature
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3. Methodology

3.1. Overview

As discussed previously, forest fires are characterized by complex 
temporal dynamics and spatial heterogeneity. In the light of this, we 
propose a multi-scale spatial–temporal feature fusion (MSSTF) model for 
near-real-time wildfire detection with Himawari-8/9 AHI data, as shown 
in Fig. 4. The essence of the MSSTF model is the fusion of multi-scale 
spatial–temporal features from BT differences for wildfire detection.

The MSSTF model receives the normalized difference between BT07 
and BT14 of Himawari data as temporal series input. Specifically, the 
input features are successively processed with the spatial and temporal 

feature extraction modules. For spatial feature learning, multi-kernel 
attention-based convolution (MKAC) is employed to capture the 
spatial difference features within multi-level spatial receptive fields. To 
deal with the complex temporal changes of wildfire events, the multi- 
scale temporal features are learned using a Transformer-based module 
with long and short-term Himawari-8/9 image sequences as the input, 
respectively. Finally, the spatial and temporal features are integrated 
across scales to achieve the task of wildfire detection.

As shown in Fig. 4, there are three distinct branches for spa-
tial–temporal feature fusion, which include: 1) local attention-based 
convolution combined with long-term temporal feature extraction, 
focusing on temporal modelling of fire dynamics; 2) further use of local 
attention-based convolution to enhance local spatial difference features 

Fig. 2. Visualization of sub-region BT values and the corresponding fire labels in Xichang fire at 13: 20 (UTC time) on March 20, 2020: (a)BT07 data of Himawari-8 
AHI; (b) Difference between BT07 and BT14 data of Himawari-8 AHI; (c) Fire labels of JAXA WLF L2 products; (d) Manually labeled dataset.

Fig. 3. The generation process of the virtual dataset for model training.
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in short-term sequences, utilizing the relationships among spatially and 
temporally neighboring pixels; 3) multi-kernel attention-based convo-
lution integrated with short-term temporal feature learning, adapting to 
fire areas of varying sizes. The multi-stream information is merged, and 

subsequently processed with a fully-connected layer and batch 
normalization. Finally, the binary classification map can be generated 
after the output features are processed with an activation function.

Fig. 4. The structure of the proposed MSSTF Framework.

Fig. 5. Visualization of time-series BT curves for fire and non-fire pixels in Xintian fire on October 17, 2022: (a) Difference of Himawari-8/9 AHI data between BT07 

and BT14 at 11: 10 (UTC time); (b) Time-series BT07 and BT14 curves for the highlighted fire pixel in (a); (c) BT difference curves of BT07 and BT14 for the fire pixel, 
the non-fire pixel and the low-temperature fire pixels highlighted in (a).

L. Zhang et al.                                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 137 (2025) 104416

6

3.2. Brightness temperature difference in spectral dimension

The Himawari-8/9 satellite can capture both the MIR (BT07, 3.9 µm) 
and LWIR (BT14, 11.2 µm) data. As shown in Fig. 5 (b), BT07 band ex-
hibits high sensitivity to thermal anomaly, while BT14 band records 
relatively stable measurements of surface temperature variations. 
Therefore, the difference between BT07 and BT14 can be a good indicator 
to distinguish the fire and non-fire pixels, as shown in Fig. 5 (c). Based on 
the fact, we use the difference feature of BT07 and BT14 for the modelling 
of fire pixels, which is expressed as: 

BTn
dif (x, y) = BTn

07(x, y) − BTn
14(x, y) (4) 

where n stands for the Tn moment in Himawari-8/9 AHI data. (x, y)
represents the position of each pixel. BTn

dif (x, y) represents the spectral 
characteristics of the position of pixel (x, y) at the Tn moment.

3.3. Spatial feature extraction with multi-kernel attention-based 
convolution

The goal of spatial feature extraction is to learn the neighboring 
difference between BTn

dif values of fire and non-fire pixels. With 
powerful ability to capture local spatial patterns, convolution process is 
highly effective for this task. However, the early-stage fire pixels exhibit 
weak characteristics of thermal anomalies in the AHI images, due to the 
relatively low temperature for the fire region at this stage and coarse 
data resolution. Moreover, the fire regions might expand to varying 
scales as time progresses. In those cases, it is difficult to effectively 
delineate the difference features between fire and non-fire pixels with a 
single-scale convolution.

Based on these facts, we propose to use a multi-kernel attention- 
based convolution (MKAC) for extracting spatial features representing 
the difference of fire and non-fire pixels within multi-scale receptive 
fields. The module integrates a context-aware attention mechanism (Fan 
et al., 2023) to enhance local features through context-aware weighting, 

while large and small kernel sizes provide flexible receptive scales to 
aggregate spatial information, as shown in Fig. 6.

In the MKAC module, we initiate the process by applying a linear 
transformation to the input feature tensor X. Then a simple depth-wise 
convolution (DWconv) is used for aggregating local spatial informa-
tion to derive the Qs (query), Ks (key), and Vs (value) matrices. Multi- 
kernel convolution processing is used in DWconv to extract multi-scale 
spatial information from the wildfire scenes. The process is expressed 
as follows: 

Qs,Ks,Vs = DWConv(FC(X)) (5) 

where F C is the fully-connected layer for linear transformation. After 
that, we make a series of processing on Qs and Ks matrices to generate 
the context-aware weight, aiming to enhance the ability of the model to 
perceive the correlation between input data. Specifically, we multiply 
the Qs matrices by the Ks matrices, and get the attention map through a 
series of nonlinear activation functions and fully connected layers. Ul-
timately, we multiply the attention map and Vs to apply the shared 
weight to enhance the self-attention of the input tensor X. In this way, 
the model will give higher weight to the high-value parts caused by 
thermal anomalies. The process is expressed as follows: 

Attnt = FC(Swish(FC(Qs ⊗ Ks)))

Attn = Tanh
(

Attnt
̅̅̅
d

√

)

Xattn = Attn ⊗ Vs

(6) 

where d is the channel of the input data and ⊗ indicates the element- 
wise product. Swish is a special nonlinear activation function defined 
as Swish(x) = x • sigmoid(x), which can alleviate the problem of gradient 
disappearance in the process of back propagation. The attention-based 
convolution module uses a set of nonlinear transformations (e.g., 
Tanh and Swish) in the generation of context-aware weights. Therefore, 
stronger nonlinearity can be represented in the feature mapping process, 
and obtains the attention weights for delineation of the local fire char-

Fig. 6. Overall architecture of MKAC module.
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acteristics. The final output is derived through a fully-connected layer, 
followed by a residual connection block. The process is expressed as 
follows: 

Xs = X+ FC(Xattn) (7) 

For providing flexible receptive scales to aggregate spatial information, 
we adopt two MKAC modules with different kernel sizes. One uses 
multiple groups of convolution kernels with different sizes to integrate 
global and local information, while the other emphasizes the role of 
local spatial information in detecting fire pixels through small-scale 
convolution kernels, as shown in Fig. 4.

3.4. Temporal feature extraction with long short-term Transformer

With a 10-minute temporal resolution, the Himawari-8/9 AHI data 
provide a wealth of temporal information as the auxiliary clues in 
addition to spatial variations to identify fire pixels. To fully use the 
temporal characteristics of wildfire pixels within different time periods, 
we segment the output features of MKAC module into long and short- 
term subsets along the temporal dimension to generate multi-scale 
data for temporal feature learning. The extraction of multi-scale tem-
poral features is then achieved by employing a long short-term Trans-
former (LSTT) module, as shown in Fig. 7.

Similar to MKAC module, we apply a linear transformation to derive 
the Qt, Kt, and Vt matrices and then calculate the attention scores: 

Qt ,Kt ,Vt = FC(Xs)

Attention(Qt,Kt,Vt) = softmax
(

Qt • KT
t̅̅̅

d
√

)

Vt
(8) 

where Xs is the output of MKAC module divided into long and short time 
windows, and d is the dimension of Qt and Kt . The above operation is 
performed for each self-attention head, which refers to hi =

Attention(Qt ,Kt ,Vt). The outputs of multiple heads are integrated by a 
fully-connected layer to integrate multiple attention information, as 
depicted in Eq. (9): 

H = FC

⎛

⎝

⎡

⎣
h1
⋮
hn

⎤

⎦

⎞

⎠ (9) 

where H stands for the output of fused multi-head attention. Then the 
skip connection and layer normalization are combined to preserve the 
high-frequency information, and highlight the temporal feature of fire 
pixels. The process can be expressed as: 

Xnorm = LayerNorm(Xs + H(Xs))

Xt = LayerNorm(Xnorm + FFN(Xnorm))
(10) 

where FFN denotes feed-forward neural network, which is employed to 
enhance the expressive ability of temporal features through nonlinear 
transformation and mapping. At the end of each Transformer layer, a 
softmax layer is used to generate the layer output from Xt . By stacking 
multiple Transformer layers, we can obtain the final output of the LSTT 
module.

3.5. Loss term

As for loss function, we use BCEWithLogitsLoss to optimize the 
MSSTF model, which is a commonly used loss function in deep learning 
used for the binary classification tasks (Li et al., 2024). The BCE-
WithLogitsLoss function is described as: 

Loss =
1
N
∑N

i=1
yi • log(σ(pi)) + (1 − yi) • log(1 − σ(pi)))

σ(pi) =
1

1 + e− pi

(11) 

where yi ∈ {0,1} represents fire labels of each pixel and pi ∈ [0, 1] rep-
resents the outputs of MSSTF model of each pixel. N is the total number 
of pixels. The model is then optimized with Adagrad algorithm (Duchi 
et al., 2011), which can optimize the learning rate adaptively to accel-
erate the training of the model.

Fig. 7. Overall architecture of LSTT module.
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4. Experiments and results

4.1. Implementation details and evaluation

In the experiments, the model setting is detailed as follows. The 
optimal settings of model hyperparameters (e.g., convolution kernel 
sizes and temporal windows size) were determined via empirical trials. 
For the MKAC module, we configure two sets of convolutional kernels of 
sizes [7, 5, 3] and [3, 3, 3]. The larger kernels are employed to capture 
global-scale information, while the smaller kernels focus more on fine- 
grained local-scale details. In the LSTT module, we establish a long- 
term window length of 72 and a short-term window length of 6, 
which is determined through the statistical analysis of the temporal 
curves of fire pixels. The detailed descriptions about the hyper-
parameters are presented in Table 2.

Four metrics are employed for the quantitative assessment of the 
detection results, including fire accuracy (FA), overall accuracy (OA), 
false alarm rate (FAR), and overall false alarm rate (OFR). The defini-
tions are as follows: 

FA =
TP

TP + FN

OA =
TP + TN

TP + FN + FP + TN

FAR =
FP

TP + FP

OFR =
FN

TP + FN

(12) 

where TP, FN, FP, and TN represent the number of true positive, false 
negative, false positive, and true negative predictions, respectively.

For comparing the detection accuracy of MSSTF model, we include 
JAXA WLF L2 Products (https://www.eorc.jaxa.jp/ptree/index.html) 
for comparison. Furthermore, given the high temporal resolution and 
low spatial resolution of Himawari-8/9 AHI data, the traditional CNN 
networks relying solely on spatial information fail to effectively delin-
eate the dynamic features among the observation data. Therefore, the 
baseline models for comparison include Gated Recurrent Unit (GRU) 
(Dey and Salem, 2017), RNN (Elman, 1990), LSTM (Hochreiter, 1998), 
Transformer (Vaswani et al., 2017) and ConvLSTM (Shi et al., 2015). 
Among them, GRU, RNN, LSTM and Transformer focus to learn the 
temporal dependencies, while ConvLSTM integrate spatial and temporal 
feature learning with the combination of CNN and LSTM modules.

4.2. Quantitative evaluation results

In the tests, we conducted experiments using Himawari-8/9 AHI data 
over six study areas in Fig. 1 to test the method performance in detection 
of wildfire events with various scales. Table 3 presents a comparative 
analysis of the proposed model against JAXA WLF L2 products and the 
comparison models. The evaluation scores show that MSSTF model 

achieves a robust performance over different wildfire scenarios, in terms 
of the highest fire accuracy and lowest false positive rates.

Comparatively, JAXA’s wildfire products show unstable FA scores in 
fire events with different spatial scales, which might be due to the low 
adaptability of the threshold-based method used by JAXA WLF products 
to various fire scenes. Moreover, serious omissions are observed in the 
results for GRU, RNN, and Transformer models in Chongqing fire, whose 
background non-fire pixels have relatively high BT values at the early 
stage of the fire. This indicates that it is difficult to accurately identify 
fire pixels only using temporal information. The blending of spatial and 
temporal features enables the ConvLSTM model to achieve a good per-
formance in this task. However, the ConvLSTM only incorporates single- 
scale information, and omission errors and false alarms easily occur in 
fire cases with heterogeneous spatial and temporal dynamics. Overall, 
the proposed MSSTF model integrates multi-scale spatial–temporal in-
formation to capture the changing characteristics of wildfire across 
different scales and dimensions, and achieves an average FA of over 88 
% and OA of over 99 % in various fire events.

4.3. Visual evaluation results

To visually evaluate the model performance, we first present the 
frequency maps of the detected fire pixels within a 24-hour period over 
different study areas in Fig. 8, which reflect the overall spatial and 
temporal patterns of the six fire events. The methods with considerable 
quantitative results in Section 4.2 (i.e., LSTM, ConvLSTM, and Trans-
formers) are involved for visual comparison. The results shown in Fig. 8
indicate that the JAXA WLF product often tends to miss fire pixels and 
leads to high OFR. Without the proper integration of spatial features, 
both the LSTM and Transformers models are susceptible to significant 
omission and commission errors, especially in the Chongqing fire. 
Particularly, the LSTM model is limited in using a single-scale perception 
field along the temporal dimension and extracting evolving features 
within long time series, thus often leading to a large number of false 
alarms in non-fire areas. Moreover, ConvLSTM tends to overestimate the 
fire areas, probably because the single-scale receptive field in the 
ConvLSTM module fails to efficiently capture the growth of fires in 
spatial and temporal dimensions. Comparatively, MSSTF model ach-
ieves the most accurate fire mapping results across different scales and 
temporal dynamics. This supports that multi-scale spatial–temporal in-
formation fusion is beneficial for fire detection.

In Fig. 9, we further present the temporal detection results at the 
early-stage of fire events. The six fire events exhibit different patterns of 
spatial–temporal variations. For example, due to the high BT values of 
the background pixels in Chongqing fire, there is no significant differ-
ence in the BT values between fire and non-fire pixels. For Liangshan, 
Yuxi and Dali fire with relatively small scales, the spatial extent remains 
stable in the early stage, as shown in Fig. 9 (b) and (c). For Xichang and 
Xintian fire, the fire pixels are characterized with low BT values in the 
early stage. Generally, the MSSTF model has a robust performance in 
identifying the fire events with different scales and changing 
characteristics.

In Fig. 10, we perform a visual analysis on the detection results of 
Yuxi and Chongqing wildfire scenarios at different stages. The Yuxi fire 
exhibits a dramatic progression, expanding to over 15 pixels (i.e., 
approximately 60 km2) in just 12 h. Conversely, the Chongqing fire 
shows minor changes in spatial scales, yet it has an overall high BT for 
the background pixels at the beginning of the fire. This brings difficulties 
in identifying the fire pixels based on their distinctive thermal proper-
ties. Regarding the detection results, JAXA’s wildfire products tend to 
miss the fire pixels with relatively low BT differences. Comparatively, 
the proposed MSSTF model achieves good detection accuracy at various 
stages of the fire events, and can effectively adapt to fire scenes with 
complex backgrounds and temporal dynamics.

Table 2 
Parameter setting.

Section Parameter Value Description

MKAC 
module

Kernel_sizes_small [3, 3, 3] Small-scale convolution kernel 
size

Kernel_sizes_large [7, 5, 3] Large-scale convolution kernel 
size

LSTT module Win_size_global 72 Global window size
Win_size_local 6 Local window size

Train Batch_train 4 Training data batch size
Epoch 50 Iterations
lr 0.04 Initial learning rate
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4.4. Ablation study

We try to explore the influence of different modules on the detection 
results by adjusting the model components. As shown in Table 4 and 
Fig. 11, Models A to E represent the combination of different spa-
tial–temporal feature extraction modules. Overall, the proposed model 
yields the optimal results with the combination of multi-scale spatial and 
temporal information. In terms of temporal learning, the longer time 
window can better reflect the fire characteristics observed by Himawari- 
8/9 AHI data. The FA value is enhanced by up to 7.5 % (i.e., from 0.8134 
for model C to 0.8884 for model A) with the incorporation of long short- 
term information along the temporal dimension, while the FAR is 
decreased by 21.66 %. This indicates that the incorporation of long 
short-term information can improve the model’s ability to detect fire 
pixels that are easy to miss and greatly reduce the false alarm interfer-
ence caused by short-term fluctuations in BT values.

For spatial modelling, when long short-term temporal information is 
employed, the incorporation of global local-scale spatial information 
(model A) reduces the FAR by 10.19 % compared to using only a local- 
scale convolution kernel (model B). The visual analysis for Liangshan 
fire is generally consistent with the quantitative analysis. With the 
integration of multi-scale spatial–temporal information, the MSSTF 
model can effectively capture the spatial–temporal dynamic of each 
pixel and demonstrate high robustness across various fire scenes.

5. Discussion

Compared to MODIS and VIIRS data, Himawari data is characterized 

by its remarkable 10-minute temporal resolution. The short intervals 
provide rich temporal dependencies, which are beneficial for moni-
toring the near real-time dynamics of wildfires. However, the high 
temporal resolution also poses challenges to the effective modeling of 
temporal information. Based on these facts, we designed the LSTT 
module, which integrates the learning of temporal representations of 
fire characteristics within both short- and long-term window lengths. 
Moreover, the temporal features are fused with multi-scale spatial fea-
tures for the discrimination between fire and non-fire pixels. Compared 
with existing solutions for fire detection that use single-scale informa-
tion, the MSSTF model can effectively capture subtle changes in pixel 
brightness temperature and accurately identify early fire pixels. We 
observe that the proposed MSSTF model achieves promising results in 
wildfire detection. Compared with various commonly used deep 
learning models (e.g., LSTM, ConvLSTM, and Transformers), the FA 
scores of the proposed method show an improvement of 14.47 %-27.49 
%. Moreover, the mapping results demonstrate that the MSSTF model 
can effectively illustrate the overall progress of fire events with different 
spatial scales and temporal changing patterns. To present the model 
performance under various conditions, more experimental results can be 
accessed on our GitHub repository (https://github.com/eagle-v 
oid/MSSTF).

Although Himawari-8/9 data boasts high temporal resolution, the 
spatial resolution in the infrared band is limited to 2 km. This limitation 
impedes the creation of wildfire maps with higher spatial resolution. To 
address this challenge, applying data fusion techniques for recon-
structing data at higher spatial resolutions is a plausible approach. 
Furthermore, special attention should be paid to the impact of clouds on 

Table 3 
Accuracy results of MSSTF and comparison methods in six study sites. For each study area, the bold values in the table represent the best model accuracy results, while 
the underlined values represent the second best model accuracy results.

JAXA WLF L2 Products Conv 
LSTM

GRU RNN LSTM Transformer MSSTF

Chongqing 
Fire

FA 0.7418 0.7295 0.3053 0.2541 0.4221 0.1885 0.8238
OA 0.9977 0.9966 0.8929 0.9135 0.8454 0.9555 0.9967
FAR 0.0243 0.1483 0.9751 0.9738 0.9767 0.9593 0.2055
OFR 0.2582 0.2705 0.6947 0.7459 0.5779 0.8115 0.1762

Liangshan 
Fire

FA 0.0989 0.9219 0.8278 0.8038 0.8469 0.7656 0.9282
OA 0.9902 0.9854 0.9388 0.9134 0.9061 0.9915 0.9969
FAR 0.0313 0.5781 0.8682 0.9062 0.9092 0.4175 0.1872
OFR 0.9011 0.0782 0.1722 0.1962 0.1531 0.2345 0.0718

Xichang 
Fire

FA 0.1318 0.8748 0.8193 0.7740 0.8840 0.8168 0.8958
OA 0.9819 0.9833 0.9923 0.9932 0.9866 0.9950 0.9933
FAR 0.0930 0.4382 0.1895 0.1161 0.3753 0.0690 0.1898
OFR 0.8682 0.1252 0.1807 0.2261 0.1160 0.1832 0.1042

Xintian 
Fire

FA 0.4601 0.4093 0.7944 0.6542 0.9140 0.8617 0.8738
OA 0.9949 0.9898 0.9516 0.9239 0.9178 0.9954 0.9972
FAR 0.0159 0.5558 0.8629 0.9230 0.9056 0.2919 0.1664
OFR 0.5399 0.5907 0.2056 0.3458 0.0860 0.1383 0.1262

Yuxi 
Fire

FA 0.6320 0.8902 0.8882 0.8493 0.9132 0.8713 0.8940
OA 0.9932 0.9720 0.9928 0.9854 0.9831 0.9971 0.9931
FAR 0.0366 0.6272 0.2521 0.4481 0.4917 0.0428 0.2406
OFR 0.3680 0.1098 0.1118 0.1507 0.0868 0.1287 0.1060

Dali 
Fire

FA 0.3704 0.4706 0.3498 0.3100 0.4467 0.4229 0.8792
OA 0.9930 0.9926 0.8583 0.8569 0.8082 0.9560 0.9953
FAR 0.0372 0.2449 0.9724 0.9756 0.9744 0.8909 0.2597
OFR 0.6296 0.5294 0.6502 0.6900 0.5533 0.5771 0.1208

Average FA 0.4058 0.7161 0.6641 0.6076 0.7378 0.6545 0.8825
OA 0.9918 0.9866 0.9378 0.9311 0.9079 0.9818 0.9954
FAR 0.0397 0.4321 0.6867 0.7238 0.7722 0.4452 0.2082
OFR 0.5942 0.2840 0.3359 0.3925 0.2622 0.3456 0.1175
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model applications. In this work, cloud masks were employed to exclude 
cloud pixels from the fire detection process. High-precision cloud masks 
are crucial for reducing false alarm rates in wildfire detection. However, 
existing cloud mask algorithms based on Himawari data suffer from 
unstable accuracies across different regions, and the spatial resolution of 
cloud products provided by JAXA is limited to 5 km. The uncertainties of 
cloud masks makes it difficult to effectively eliminate the interference 
caused by clouds, resulting in potential false alarms in fire detection 
results.

In addition, the Himawari-8/9 AHI sensor captures data from 16 
spectral bands within the wavelength range of 0.46–13.3 µm, and the 
data in these bands contain substantial information about interference 
factors such as fire or clouds. The distinct characteristics of BT differ-
ences between fire and non-fire pixels from both spatial and temporal 
perspectives are key aspects for effective wildfire detection. Therefore, 
we used the difference between BT07 and BT14 as the model input, 
which aligns with extensive existing work based on Himawari AHI data. 

However, we believe that enhancing model performance can be ach-
ieved by combining multiple feature indices and incorporating ’spectral’ 
information. To accomplish this goal, the model network should be 
designed to fully integrate the high-dimensional information required 
for the detection task.

6. Conclusion

In this paper, we propose a novel deep learning model integrating 
multi-scale spatial–temporal features (MSSTF) to efficiently capture the 
dynamics of wildfires. The core idea of the proposed approach is to 
integrate both global and local-scale spatial information and long short- 
term temporal information for near-real-time wildfire detection based 
on Himawari-8/9 AHI data. To adapt to wildfire characteristics, the 
multi-kernel attention-based convolution module and long short-term 
Transformer module are carefully designed for learning the spatial 
and temporal patterns for complex wildfire scenes, respectively. 

Fig. 8. Frequency map of the detected fire pixels in the six study areas.
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Fig. 9. Visual maps of the fire detection results obtained by MSSTF model in the early stage of the six events.
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Extensive tests have been conducted on various wildfire events to test 
the model performance. Compared with JAXA WLF L2 products and 
several widely used baseline models, the proposed MSSTF model has 
been verified to achieve superior performance and demonstrates 
robustness across fire events with complex dynamics. Particularly, the 
MSSTF model is able to capture early wildfires sensitively, and thus can 
offer early warnings for potential wildfires. To enhance the practicality 
of the proposed method for real-world applications, developing an un-
supervised fire detection framework is one of the major targets for future 
work.
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Table 4 
Quantitative analysis of the influence of different spatial and temporal modules 
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Model Temporal 
module

Spatial 
module

FA OA FAR OFR

A Long short- 
term

Global 
local- 
scale

0.8884 0.9979 0.0809 0.1116

B Long short- 
term

Local-scale 0.8764 0.9952 0.1828 0.1236

C Long-term Global 
local-scale

0.8134 0.9942 0.2975 0.1866

D Long-term Local-scale 0.8182 0.9937 0.3268 0.1819
E Short-term Global 

local-scale
0.7352 0.9802 0.6787 0.2648

Fig. 11. Visual analysis of the influence of different spatial and temporal modules on detection results in the Liangshan fire.
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