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Abstract—Blurring and noise degrade the performance of
image processing. To mitigate this effect, various regularization-
based deblurring methods have been proposed. Total variation
regularization is widely used owing to its excellent ability in
preserving the salient edges, but it also tends to smooth the image
details. In this paper, we propose a local extremum-constrained
total variation (LECTYV) framework for image deblurring. In the
developed deblurring framework, we integrate prior knowledge
of the dark channel with the structural features of the image into
a single regularization term. Furthermore, unlike most existing
methods that focus on the overall sparsity of the dark channel,
the defined regularization term allows for a pixel-wise adaptive
description of the image to restore its inherent spatial texture
structure. Finally, a majorization-minimization-based method is
designed to solve the developed LECTV framework. Experimen-
tal results on natural and hyperspectral images show that the
designed framework exhibits excellent performance in removing
multiple types and degrees of blurring. Extensive evaluations
also further show its superiority compared to other advanced
methods.

Index Terms— Non-blind image deblurring, hyperspectral
image (HSI), local extremum constraints, total variation (TV).

I. INTRODUCTION

MAGE deblurring is an inverse problem in computer vision

and image processing filed. The ill-posed nature poses the
main challenge for these kinds of problems. In the linear
observation degradation model, the degradation process can
be formulated as the convolution of clear image X and blur
kernel H:

Y=X®H+n (D
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where Y represents the degraded image, n is the noise, and
® 1is the convolution operation. Depending on the availability
of H, the above problem is categorized as non-blind deblurring
or blind deblurring. In this paper, we focus on non-blind image
deblurring, a case where the blur kernel is assumed to be
known and spatially invariant. Its main task is to estimate the
latent sharp version from degraded image and blur kernel. The
problem is ill-posed because noise corrupts the blurred image
and band-limited kernel, making the solution not unique [1],
[2], [3]. This makes it difficult to estimate the corresponding
sharp version from the blurred observation, even if the blur
kernel is known.

Wiener filtering [4] and Bayesian-based Lucy-Richardson
filtering [5] are both classical and popular filters for image
deblurring. Furthermore, many variants have been developed
for better simulation and lower computational costs. To effec-
tively suppress ringing artifacts and restore images, researchers
have proposed modeling strategies including low-rank or
sparse prior [6], [7], [8], [9], [10], [11], [12], [13], gradient
or intensity prior [14], [15], natural image statistics [3], [16],
[17], sparse representation [18], [19], [20], and total variation
(TV) regularization [21], [22], etc.

Recently, the TV model is widely used in image restora-
tion due to its piecewise smoothing capability. Its excellent
performance has been demonstrated in many works, such as
deblurring [23], [24], [25], denoising [26], [27], [28], [29],
and compressed sensing [30], [31]. Qin et al. [32] proposed
an image deconvolution method based on shearlet transform
and fractional order TV. Based on [32], Chowdhury et al. [24]
developed a fractional-order TV to simultaneously remove blur
and Poisson noise. Ren et al. [23] investigated a novel deriva-
tive space-based reformulation algorithm for TV-based image
restoration by using an efficient derivative alternating direction
method of multipliers (ADMM). These methods exploit the
piecewise smooth property of the TV model to efficiently
recover structural features in images. However, they neglect
the intricate details within the images. To efficiently restore the
image, Tang et al. [22] decomposed the degradation image into
three parts: salient edges, details, and constant regions. Then,
the TV model was applied to the salient edges and constant
regions, while the non-local TV model was applied to the
details. TV-based image restoration with linear filtering and
soft thresholding performs was developed in [33]. It could be
considered as an effective first-order algorithm for processing
images of relatively large sizes. Chen et al. [34] solved the
problem of nonlinear image restoration based on TV by an
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objective function containing the nonlinear least-squares fitting
term and TV regularization. An extending primal-dual hybrid
gradient (E-PDHG) method combined with TV regularization
was proposed for Prestack Seismic image deblurring [35].
By combining the normalized TV term with sparse prior
knowledge of the blur kernel, Xie et al. [36] proposed a
variational framework for underwater image dehazing and
deblurring. In addition, TV-based model deblurring was also
developed for hyperspectral image (HSI). Considering the
spectral correlation between adjacent bands, Fang et al. [37]
proposed a non-blind deconvolution method for HSI based on
spectral-spatial TV (SSTV) model and explicit non-negative
constraints. Similarly, SSTV achieved promising results in
preserving salient structures in HSI, while it lacked proper
attention to finer details and textures. The aforementioned
studies demonstrate the effectiveness of the TV model in
image restoration. However, it also tended to smooth out
details while preserving salient edges in the image.

Recently, deep learning-based (DL-based) methods have
been widely used for deblurring tasks [38], [39], [40], [41],
[42], [43]. Xie et al. [41] proposed to learn optimal parameters
for regularization adaptively based on TV deep networks,
which used deep learning and prior knowledge to compute
regularization parameters. It can automatically update param-
eters and avoid complex computations. By utilizing spectral
and spatial restorers, [44] proposed to address single-image
deblurring problems with a local adaptive channel attention
module based on the spectral-spatial network. To connect
MAP and deep model, [45] proposed two generative networks
to model the deep priors of both the latent image and blur
kernel, and developed an unconstrained neural optimization
solution to blind deblur. In [46], Zamir et al. aimed to balance
spatial details and high-level contextual information in image
restoration and proposed a novel collaborative design for
multi-stage progressive image restoration. Chen et al. [47]
designed a non-blind image deblur deep learning method that
utilized an untrained deep neural network to recover images
without any external training data containing ground-truth
images. Although DL-based methods can achieve satisfac-
tory results in some blurred or noise-degraded scenarios, the
complexity and variability of blur types or degrees make it
unrealistic to use only a single trained network to cover all
types of blurred images.

The dark channel prior (DCP) has proved useful for recov-
ering details in the degraded image. Based on the observation
that dark channel of outdoor haze-free images is almost zero,
He et al. [48] proposed dark channel prior for outdoor image
dehazing. Afterward, research scholars developed it for various
image restoration tasks (e.g., dehazing [49], [50], underwater
image restoration [51], [52]) and achieved attractive results.
In previous studies [53], [54], [55], dark channel was applied
to blind deblurring and performed well. Pan et al. [53] found
that for natural images, most values (not all) of the dark
channel as zero elements in clear images, while that of blurred
images are mostly non-zero, i.e., the dark channel of clear
images is sparser. They derived the properties of the blurring
(convolution) operation and explained this phenomenon as the
fact that the weighted sum of pixels in the local patch is
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larger than the minimum one, i.e. convolution increases the
value of dark pixels. Based on this finding, they introduced
an Lo-regularization to minimize the dark channel of the
recovered image. Yan et al. [56] utilized both bright channel
prior and DCP, called extreme channel prior, for deblurring
operation. Ge et al. [54] applied Li-norm to the non-linear
channel (NLC) as a prior to clean images, making NLC prior
to clean images rather than blurred images. All of these works
made use of the property that dark channel in clear images is
sparser than blurred images, removing blur from the degraded
image to some extent. However, these studies focus on the
overall properties of the image and do not take into account
the specific situation of each pixel in the image.

Although recent research has reported more results based
on the TV model, DCP, or the joint TV model and DCP
for image deblurring, such as the application in recovering
remote sensing images as discussed in [57] and [58], which
introduced the DPC for deblurring HSI, in conjunction with
the TV regularizer based on Ly and Li. On the one hand,
while these methods aim to exploit the advantages of both
techniques, they often treat the DCP or TV model merely as
a separate regularization term to characterize the properties of
the original image. On the other hand, these methods generally
focus on leveraging the sparsity of DCP, they characterize
the overall properties of the image rather than considering
them pixel-wise. In this paper, we propose a novel approach:
a pixel-wise adaptive constrained TV model. This model
integrates the TV model with prior knowledge of blurred
images into a single regularization term, allowing for a more
comprehensive characterization of image texture at a per-pixel
level.

The contributions of this paper are summarized as follows:

1) This paper proposes a robust image deblurring frame-
work based on a local extremum-constrained TV
(LECTV) model. The proposed framework only contains
the trade-off parameter A, the constrained TV term,
and the fidelity term, which avoids the interaction and
influence among parameters.

2) With the aid of the prior knowledge of blurred images,
we develop a novel per-pixel adaptive constraint strategy,
which can effectively recover details and preserve salient
edge information of images by characterizing each pixel
of the image.

3) An iterative optimization algorithm based on
majorization-minimization is devised to derive and
solve the proposed LECTV. The proposed method
can remove multiple types and degrees of blur while
suppressing slight noise.

II. RELATED METHODS
A. Maximum a Posterior Framwork

In recent years, maximum a posteriori framework (MAP)
estimation theory has received increasing attentions and been
also used to solve many image processing problems, such as
image denoising [59], [60], [61], super-resolution [62], and
deblurring [14], [41]. Based on the MAP estimation theory,
for a clean image X € RYN*B vith a spatial size of M x N
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and B bands, a given blurred and noisy image Y € RMN*5B
can be represented by the following image deblurring model:

X = arg min L (X) 2)
LX) = [IY — HX|* + AR(X) 3)

where R(X) is the regularization term, which gives the prior
of the original clean image. A represents the corresponding
weight of the regularization term.

B. Image Deblurring TV-Based Model

The TV regularization term has received extensive attentions
in image restoration work due to its ability in modeling
piecewise smooth image. Rudin [63] first used the TV model to
solve the problem of image denoising. For a gray-level image,
the basic TV model is defined as follows:

MN
VX = 3V (V%) + (v0x)? )
i=1

where Vl.h and V/ are linear operators corresponding to
the horizontal and vertical first-order differences at pixel i,
respectively.

If we incorporate the TV model into the regularization
model in (3), the TV-based deblurring can be expressed as:

MN 5
LX) = [IY —HX|> + X Z/ (VIX)" +(V'X)*. )
i=1

Adding up the TV model of each band is the most straight-
forward way to extend the gray-level image TV model (4) to
multi-spectral images or HSI. Then, a hyperspectral TV (HTV)
model can be derived as below:

B
HTV(X) = ZTV (X;) (6)
j=1

where X = [Xj,...,Xj,...,Xp] is a HSI, X; represents
the j-th band of the HSI. However, the gradients in different
bands may be inconsistent since different objects have different
reflections for specific spectral bands in HSI. To some extent,
these differences provide additional complementary informa-
tion. Thus, the TV model of HSI can be described as [64]:

MN B

SSTV(X) = > > \/[(thX)Z + (VPX) + (V,-SX)Z] .

i=1 j=1 I

)

where V! represents a first-order difference linear operator
in the spectral direction. Substituting the SSTV model (7)
into (3), it follows

LX) = |Y — HX|)?
MN B

+ AZZ/ [(VEX)® + (7/X)” + (VX)];. ®)

i=1 j=I

Fig. 1. The relationship between correlation values of the local minimum
pixel and spatial structure of blurred image. (a) Clear, (b) Blurred, (c) Gradient
of (a), (d) Correlation values of local minimum pixel.

IIT. PROPOSED LOCAL EXTREMUM CONSTRAINED
TOTAL VARIATION MODEL

A. Constraint Based on Blur Prior

For image X, the dark channel [48] is mainly used to
describe the minimum value in the local neighborhood of the
image. Here, it has been further generalized to multi-spectral
and HSI, which is defined as follows:
min [ min
qeN(p) Lj€ll..... B}
where p and g represents the position of the pixel. N'(p)
represents the image patch centered on p. X; represents the
j-th band of image X. If X is a grayscale image, it has
minje1,...8) X/ (¢) = X/ (g).

In the previous works, the sparsity of dark channels is
used as priors. Unlike them, our proposed method is devel-
oped based on the fact that the dark channel is defined by
the minimum pixel of local neighborhood, which can reflect
the structural information of image. From Fig. 1, it gets the
connection between the dark channel of the blurred image and
the spatial structure. For example, Fig. 1(d) is the correlation of
the minimum pixels, which reflects the structural information
in Fig. 1(c) to some extent. Therefore, it takes the correlation
value of the minimum pixel as a constraint to enhance the
spatial structure information of the image.

P(X)(p) = X/ (q)] 9)

B. Local Extremum Constrained Total Variation Model

This subsection presents how to implement non-blind image
deblurring with the constrained TV model. Firstly, we define
pixel-wise adaptive constraints based on the prior knowledge
of the blurred image, which can more comprehensively reflect
the image information including salient structures and fine
textures. Next, it introduces that the defined constraint strategy
is integrated into the traditional TV model to construct the
constrained TV model. On the one hand, the constrained
TV model enhances the spatial texture information in the
image. On the other hand, the minimum value in the spectral
dimension can reduce the influence of noise on the tar-
get to some extent. Then, the proposed constrained model
is applied to natural and hyperspectral images. For conve-
nience, the proposed methods are denoted as LECTV ¢ty and
LECTVcyry, respectively. The constrained TV models are
defined as:

LECTVcry (X)

- Z \/Col. [(v{’xf T (v;’x)z]

(10)
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LECTVcurv (X)
MN B

_ ZZ\/CO (VIX)

i=1 j=I

2+ (VrX)° (11)

- (VfX)z]j

Based on the local minimum, the constraint matrix Cy(i) is

defined as
Co(i) = &/ (C()

where ¢ is a constant that adjusts the range of values of the
constraint Cy. C is the local minimum value of the image, and
its definition can be described as:

iy — IP(Xo) (), P(Xo) (i) >0

(12)

. (13)
T, otherwise
where P (Xg) is given in (9) and 7 is a positive constant set
as T = 107° in this paper.
Incorporating the LECTVcgTy model (11) into (3), the
proposed LECTVcgry method for HSI deblurring can be
expressed as:

LX) =Y - HX|?
MN B
+)\ZZ\/CO (VhX)® (v;)x)2+(v;x)2]'
J
i=1 j=1
(14)

where the first fidelity term enforces similarity between Y and
HX, and the second one is the constrained TV regularization
term. In (14), the LECTV cyrv model considers the multi-band
structure of HSI, which can produce more reliable results than
deconvolution by each band alone. Similarly, combining (10)
with (3), the proposed LECTVcry method is rendered as:

MN
L(X) = |Y — HX|> + ) Z\/Coi [(V1%)” + (v%)%]
i=1

(15)

As illustrated in Fig. 2, the framework visually depicts how
LECTYV utilizes the prior information of the blurred image
as a constraint for image restoration. Specifically, LECTV
constructs a constraint matrix by utilizing the pixel information
and the prior knowledge reflected in the blurred image itself.
Subsequently, it employs pixel-wise to constrain the gradient
map, forming a local extremum-constrained TV model. Fur-
ther details will be provided in the subsequent subsections.

C. Derivation of Model Solving
Let X® denote the image at the k-th iteration. The function
F (X | X®) satisfies:

F (X(") | X(k)) —L (Xac))

LX) = F (X]X9),

(16)

X £X® 17

where F (X | X(k)) is a function of X and serves as an upper
bound for L(X). Assume that X*+D is obtained from the
following equation:

X**D — arg minF (X | X(k)) ) (18)
X
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Fig. 2. Framework of the proposed LECTV image deblurring method.

Then, it follows
L (X<k+1>) <F (X(k+1> | X(k)) <F (X<k> | X(k)) —L

(x®).

19)

In this paper, instead of solving each linear system exactly,
we only reduce the relevant quadratic function. According
to [65], conjugate gradient (CG) algorithms can be employed
for implementation. Since (14) is already quadratic, for (11),
according to the following facts:

Va < Jag +

(a —ao) (20)

J_

for any @ > 0 and a9 > 0, the above equation holds. The
definition of the function Fcyry is presented in (21), as shown
at the bottom of the next page, where Cp = C (XO) is a
constant matrix. For any X, X® satisfies Fepry (X | X(k)) >
CHTV(X) and the equality if and only if X = X®. Then,
(21) can be rewritten as:

Fcutv (X | X(k))

MNB

-2

i=1 j= 1\/C0,- [(vihx(k))zJr (Vl_vx(k))2+ (VfX(k>)2]_
MN B

J

41 ZZ Co, (V;)X)?
i=1 j=1 \/co,. [(vihx<k>)2+(vlvx<k>)2+(vgx<k>)2]
MN B

+32>

S o [0+ (910 ¢ (707
+K (x®)

where K(X(k)) is a constant independent of X. There-
fore, Fcurv (X | X(k)) provides a quadratic upper bound on

CHTV(X). Define wk) = {wl.(k),i =1,....M N} with

Co, (vzh X)j

J
Co, (st X)i

J
(22)

*) _ !

w;
o [(72X0) + (wx0)? 4 (wx0)?]

j
(23)
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Then, (22) can be rewritten as:

Feurv (X | X(k))
| My 5
S X (o] 4K (x%)
i=1

1 2 ,
+ 3 ; [[th]i (Co,-Wj,i) + [D X]l2 (CO,-Wj,i)] 24)

with D" DY, and D* being the first-order differences operators
along the X-axis, Y-axis, and Z-axis, respectively.
In addition, define a diagonal matrix

A = diag (co,. w(k)) . (25)

With the aid of (25), Fcyry can be rewritten as:
Feury (X | X(k)) — XD’ Y®DX + K (X(k)) (26)
with D = [DODHTOH' D)7 and YW =

diag (A®, A®,A®).  Substituting AFcury into  (14),
it yields

F (x | x<k>)
— Y — HX|? + XX’ D" Y®DX + AK (x<k>)
_xT (HTH + /\DTT(")D) X — 2XTHY + K’ (X<k>) 7

where K’ (X(k)) represents a constant independent of X.
By minimizing (27), it has
-1
X+ — (HTH n )\DTT(k)D) H'Y (28)
From (28), obtaining X**1 is equivalent to solving the
large linear system A(k)X_ =Y, where A is defined as A =
H'H + ADTT®D and Y is calculated as Y = HTY. This
paper solves the problem by using the CG algorithm. LECTV
iteratively updates F (X | X(k)) and ensures a reduction of
F (X | X®) with respect to X.

D. Algorithm Description

Algorithm 1 summarizes main steps to optimize and solve
the LECTV-based image deblurring problem using the MM
technique.

iter is the iterative stop condition of the MM algorithm, and
A is the regularization parameter. Inspired by [25], we design
a new adaptive . The new designed A can adjust adaptively.
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Algorithm 1 LECTV-Based Image Restoration
Input: Dedraded image Y
Initialization: X, iter

while ) iteration stopping condition not met do
Compute Cp(i) according (12)
Compute A according (29) or (30)
while MM iteration stopping condition not met do
Compute matrix A® using (23), (24), and (25)
Compute F (X | X®) by (27)
X *k+D) . x k)
while CG iteration stopping condition not met do
X*+D .= CG iteration for system A®XX =Y,
initialized at X%+
end while
k=k+1
end while
end while

Output: The restoration result

Moreover, the definition of \ indicates that it is related to the
degree of image blurring. In a grayscale image, the parameter
A is defined as

A0 = — 2""2 _ (29)
o [(VIX®)? 4 (VPXO)*] +
For a HSI, the parameter A can be rewritten as
A0 — po’
& (VX + (X0 + (X0 1 p
(30)

where p =2 (¢ + M N); o is the standard deviation of zero
mean Gaussian noise. The values of p, 8 and 6 are consistent
with the comparison algorithm adaptive TV [25]. As can be
seen from the above definition (29) and (30), the parameter A
is also adaptive, which does not need to be manually specified.
In addition, each band of HSI has an independent value of A,
which is more applicable to the deblurring of different bands.

IV. EXPERIMENT RESULTS ANALYSIS

In this section, firstly, we describe the evaluation metrics,
experimental setup, and datasets. Then, we provide perfor-
mance evaluations of the proposed method and implement
comparative experiments on multiple datasets.

MN B

Co, [ (V%) + (%) + (ViX)?]

Feny (X | X<k>) — CHTV (X(k)) + %Z >

S e [(9x0) + (7rx0) + (x0)]
1 MN B
322

i=1 j=1 \/Coi [(vihx(k))2 + (Vl_vX(k))2 + (VisX(k))z]

J
Co, [(VEX®) 4 (VX®) 4 (vx0)°]

4 21)

J
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A. Evaluation Metric and Experimental Setting

The quality of the restoration image is very important for
subsequent processing, but it is difficult to judge directly by
visual effects. Therefore, in order to give a comprehensive
evaluation, the experimental results on RGB images and HSI
are evaluated quantitatively and qualitatively. Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity (SSIM) are
used for quantitative metrics of natural images. PSNR, SSIM,
Spectral Angle Mapper (SAM) and Erreur Relative Globale
Adimensionnelle de Synthese (ERGAS) are used on HSI.
Among them, PSNR and SSIM values are used to evaluate
the spatial quality of the image, with larger values correspond-
ing to a better quality of the restoration image. SAM and
ERGAS values are used to measure the spectral quality of
the restoration image, with smaller values corresponding to a
better quality of the restoration image.

The test datasets consist of three nature image datasets,
and HSI datasets. In detail, natural image datasets contain:
the dataset in [66], labeled as Datasetl, with 20 grayscale
images; the dataset in [67], labeled as Dataset2, with 9 color
images and 6 grayscale images; and the Berkeley Segmen-
tation Dataset in [68], labeled as Dataset3, with 100 images.
In experiments on HSI, CAVE dataset, Pavia University, Urban
data, and Pavia City data are used to validate the effectiveness
of the proposed method. To demonstrate the adaptation of
LECTYV under multiple degradation environments, we simulate
seven different cases as follows:

1) GaussianA: § = 1.6 and o = 0.00006 (average PSNR

is 24.30dB);

2) GaussianB: § = 3 and o = 0.0001 (average PSNR is
22.91dB);

3) GaussianC: § = 5 and o0 = 0.0001 (average PSNR is
22.55dB);

4) SquareA: side size s = 9 and o = 0.00006 (average
PSNR is 21.48dB);

5) SquareB: side size s = 13 and o = 0.00006 (average
PSNR is 20.31dB);

6) MotionA: The motion kernel with a motion displacement
of 20 pixels, angle with 15 degrees and o = 0.0002
(average PSNR is 20.75dB);

7) MotionB: The motion kernel with a motion displacement
of 35 pixels, angle with 45 degrees and o = 0.0002
(average PSNR is 18.65dB);

where § and o denote standard deviation of Gaussian kernel
and Gaussian noise, respectively. The average PSNR value is
calculated by all datasets including Datasetl, Dataset2, and
Dataset3.

B. Effects of Adding the Local Extremum Constraints

In this subsection, firstly, we show the gradient with or
without the local extremum constraint. Then, it presents the
comparison result of the TV-based algorithm and the con-
strained TV-based algorithm.

1) Effect on Gradient: Fig. 3 shows the unconstrained and
the constrained gradient of the degraded image (the degraded
image is generated by GaussianA). It can be seen that the
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(c) (@)

Fig. 3. Comparison of unconstrained and constrained gradients of degraded
image. (a) Clear, (b) Blurred, (c) Unconstrained gradients of (b), (d) Con-
strained gradients of (b).
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Fig. 4. The average PSNR of TV and LECTVcry.

unconstrained gradient (Fig. 3(c)) has less structural infor-
mation, which results in smoother segmentation boundaries.
On the contrary, the constrained gradient (Fig. 3(d)) has more
vivid texture details and sharper boundaries. The structural
information is clearer and more reliable than the unconstrained
version.

2) Effect on Performance: In this subsection, the exper-
iments are implemented to verify the effectiveness of
the proposed local extremum constraint. The TV-based
method [25] and the proposed constrained TV-based method
are represented with TV and LECTVcry, respectively. The
performance of the LECTVcry is evaluated on Datasetl,
Dataset2, and Dataset3. Herein, we select four degrada-
tion cases including GaussianA, GaussianB, SquareA, and
SquareB. The average PSNR and SSIM values of the restora-
tion results are shown in Fig. 4 and Fig. 5, respectively. It can
be noticed that the indices of the LECTV model are superior
to the TV model in all cases.

Fig. 6 displays the visual restoration examples in the cases
of GuassianA and SquareA. It is evident that the TV-based
image is still a slight blur in the local details. In contrast, the
LECTVcry method performs well in the finer details. Thus,
it is seen that the local extremum constraint can compensate
the detail information with the inherent structure of the image.

C. Experiments on Nature Images

To illustrate the superiority of the proposed method, exper-
iments on multiple datasets are performed and compared with
other competitors including hyper-laplacian prior method (HL)
[69], adaptive TV deblurring algorithm [25], ADMM-C and
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Fig. 5. The average SSIM of TV and LECTVcry.
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(a) Clear (b) Blurred () TV (d) LECTVcry
Fig. 6. Visual example restored by TV and LECTVcry (The first row is

degenerated by GuassianA and the second row is degenerated by SquareA).

ADMM-H [23], nonlocally centralized sparse representation
(NCSR) [18], cascade of shrinkage fields (CSF) [66], learning
fully convolutional networks (LFCNN) [70], SelfDeblur [45],
MPRNet [46], FTOAC [71] and INFWIDE [72]. To facilitate
the comparison of different methods, the best values in the
experiments are highlighted in bold font.

Tables I-IIT show the average performance (PSNR/SSIM) of
different methods on Datasetl, Dataset2, and Dataset3, respec-
tively. Firstly, in multiple datasets and degradation types, the
PSNR and SSIM values of the proposed LECTV Ty achieve
the highest performance in almost all cases, which shows the
superiority of LECTVcTy. Secondly, it is known from the
experimental results on the three datasets that the performance
of HL and CSF decreases significantly under the case of
SquareA, SquareB, MotionA, and MotionB. The performance
of ADMM-H, ADMM-C, and LFCNN are degraded in the
cases of SquareA, SquareB, and MotionB. The performance
of NCSR is also degraded significantly in the SquareB case.
Four DL-based methods (MPRNET, SelfDeblur, FTOAC, and
INFWIDE) also have significantly degraded performance on
two motion blur cases (MotionA and MotionB), which reflects
the limitation of the generalization ability of DL-based meth-
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ods. TV-based method is also degraded under SquareB and
MotionB. In contrast, the results of the proposed LECTVcty
achieve the stable and superior performance on different blur
kernels and datasets. It also shows the robustness and effec-
tiveness of the LECTVcry algorithm. In addition, compared
with the TV model, the LECTV Ty has better performance in
different degradation cases and datasets, which illustrates the
effectiveness of the proposed local extremum constrained TV
model.

It is also of great significance for the performance evaluation
of algorithms that the restoration results are realistic and
natural. In order to visually evaluate the reliability of the
restoration results, we consider three degradation cases on dif-
ferent images with comparisons. Figs. 7-9 display the blurred
images and restoration results in the cases of GuassianA,
SquareA, and MotionA, respectively. From Figs. 7-9, it gets
visually that the proposed LECTVcry method can always
achieve better restoration results than other competitors, espe-
cially in terms of image details. Specifically, compared to other
methods, the recovery results of LECTVcry exhibit sharper
edges and textures. This is particularly evident in selectively
enlarged regions, such as the stamen of a flower and the
facial features of a parrot. This indicates that LECTVcry
performs well in restoring the texture features for the image
by incorporating both pixel information and prior knowledge
of the blurred image. Furthermore, this also demonstrates that
pixel-wise constraints are effective in recovering fine details
of the image.

In addition, we compare the convergence of LECTVcyty
and TV method. Fig. 10 shows the evolution of PSNR and
objective function value in the restoration process for TV
and LECTVcry on the Flower image (GaussianA, PSNR:
2491dB). It is seen from the evolution graph that the
LECTVcry has a smaller error and a higher PSNR value than
the TV-based method. As the number of iterations increases,
the relative change values of LECTV’s PSNR converge to
0 more quickly, which also implies that our method spends
fewer iterations.

D. Experiments on Hyperspectral Images

According to the multi-band characteristics of HSI, we fur-
ther extend the proposed LECTVcry to LECTVcgty. The
proposed LECTVcyty considers the spectral information of
HSI and utilizes the unique spectral redundancy among adja-
cent spectral bands, which are combined with other spectral
bands to compensate for the disturbed information. Therefore,
deconvolution with multiple bands can obtain more reliable
results than an individual band. In this subsection, LECTV
(including LECTVcty and LECTVcyty) is tested on HSI to
demonstrate the validity of the proposed method. The single-
image-based HL [69], FPD [73], SSTV [37], WLRTR [74] and
OLRT [75] are used to compare with the presented LECTV
method. The CAVE dataset and three HSI are used to verify
the superiority of the proposed method. The size of image in
the CAVE dataset is 512 x 512 pixels with 31 spectral bands.
Three HSI are composed of Pavia University (610x340x103),
Urban (307 x 307x162) and Pavia Center (200 x 200x191).
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TABLE I
PERFORMANCE COMPARISON OF DATASET1

Case Index HL ADMM-C ADMM-H NCSR CSF LFCNN MPRNET SelfDeblur FTOAC INFWIDE TV LECTVcry
GaussianAPSNR 24.84 2576 2525 30.82 23.51 2556 2293 24.05 23.12 2533 2648  32.51
SSIM 0.7714 0.8148  0.8079 0.92450.7369 0.7930 0.6626  0.6990 0.7126 0.7111 0.8306 0.9536
GaussianB PSNR 23.94  26.23 2547  31.52 2232 2477 2213 2390 2097 2433 2734  34.06
SSIM 0.7033 0.8074  0.7894 0.91410.6586 0.7494 0.5753  0.6538 0.5222 0.6588 0.8286 0.9527
GaussianC PSNR 24.24  26.73 25.85 32.86 2220 2517 22.12 25.16 2041 24.69 28.13  36.26
SSIM 0.7112  0.826 0.8049 0.93180.6528 0.7662 0.5712  0.7078 0.4681 0.6742 0.8514 0.9687
SquareA PSNR 23.24 2542 2466 32.12 21.26 24.06 21.80 24.71 19.62 24.19 2720 36.45
SSIM 0.6528 0.7707  0.7493 0.9262 0.5864 0.7121 0.5360  0.6799 0.3766 0.6542 0.8214 0.9716
SquareB PSNR 21.58 23.23 22.68 29.07 20.04 22.14  20.61 22.93 19.03  22.69 2545 34.61
SSIM 0.5524 0.6574  0.6359 0.8694 0.4923 0.5997 0.4630  0.5790 0.3345 0.5905 0.7536 0.9566
MotionA PSNR 23.72  26.46 2522 3528 21.00 20.54 24.29 19.61 19.23  22.09 30.60 36.78
SSIM 0.7003 0.8246  0.7959 0.95240.5991 0.6186 0.7090  0.4033 0.4435 0.6230 0.9049 0.9616
MotionB PSNR 21.32  23.07 22.08 33.77 1853 19.66 17.30 18.26 17.79 2093 2570  35.56
SSIM 0.5667 0.6842  0.6503 0.9293 0.4442 0.5407 0.2998  0.3613 0.3378 0.5694 0.7664 0.9494
TABLE I
PERFORMANCE COMPARISON OF DATASET2
Case Index HL ADMM-C ADMM-H NCSR CSF LFCNN MPRNET SelfDeblur FTOAC INFWIDE TV LECTVcry
GaussianA PSNR 27.47  28.11 27.53  32.28 25.58 26.09 2322 25.02 2361 2641 29.10 3497
SSIM 0.8347 0.8546  0.8505 0.93130.8097 0.8448 0.8092  0.8501 0.8322 0.8600 0.8763 0.9490
GaussianB PSNR 26.39  28.18 27.43  33.12 2427 2536 2293 2474  21.69 2545 2935  35.52
SSIM 0.7863 0.8390  0.8265 0.92410.7466 0.8068 0.7841  0.8234 0.7331 0.8304 0.8632 0.9477
GaussianC PSNR 26.50  28.47 27.63  34.31 24.08 2550 23.29 25.69  21.16  25.74 2993  37.36
SSIM 0.7849 0.8469  0.8322 0.93670.7370 0.8088 0.7938  0.8393 0.7033 0.8373 0.8729 0.9624
SquareA PSNR 25.19 27.14 2633  32.86 2293 2451 2293 25.41 2024  25.04 28.80  37.56
SSIM 0.7354 0.8065  0.7881 0.91750.6754 0.7682 0.7711  0.8172 0.6416 0.8251 0.8458 0.9670
SquareB PSNR 23.40 24.93 2430 29.75 21.57 2293 21.21 24.06 19.17 2344 26.82  35.68
SSIM 0.6578 0.7245  0.7042 0.8608 0.5974 0.6937 0.7024  0.7543 0.5889 0.7908 0.7875 0.9484
MotionA PSNR 25.24  27.72 26.52 3573 2221 2190  25.00 19.01 18.76 2322 3192 3842
SSIM 0.7497 0.8390  0.8163 0.94350.6636 0.6843 0.8265  0.5981 0.6103 0.8083 0.9065 0.9541
MotionB PSNR 23.16 2492 23.84  34.04 20.20 21.02 17.82 18.01 17.38  21.34 2821  37.64
SSIM 0.6697 0.7580  0.7299 0.9168 0.5657 0.6586 0.5701  0.5817 0.5488 0.7655 0.8334 0.9458

These datasets have also been used in HSI deblurred studies
to validate the performance [12], [74], [75], [76].

The Gaussian blur kernels with standard deviations of 3
(Case A) and 5 (Case B) are used to obtain the degraded
images, which are also added to the additional Gaussian noise.
In order to ensure the fairness, the experimental parameters
of all competitors are finely tuned based on default settings
from codes of authors’ individual websites or parameter ranges
of these papers (especially WLRTR [74] and OLRT [75]) to
achieve the optimal performance. To facilitate finding the bet-
ter performance on different methods, the best and second-best
values are labeled in bold and underlined, respectively.

1) Experimental Results Analysis on CAVE Dataset: The
quantitative evaluation results of CAVE Dataset are shown
in Table IV. From visual and quantitative evaluation metrics,
it follows that both the proposed algorithm and competitors
can improve the quality of degraded images. It shows that the
proposed LECTV method outperforms the FPD, SSTV, HL,
WLRTR, and OLRT methods in four quantification metrics.
Specifically, LECTVchty acquires the best values in PSNR,
SSIM, SAM, and ERGAS in Case B, while LECTVcty
achieves the second-best results in four metrics. In Case
A, the best PSNR, SSIM, and SAM values are achieved
by LECTVcry, and LECTVcyry achieves best in ERGAS.
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TABLE III
PERFORMANCE COMPARISON OF DATASET3

Case Index HL ADMM-C ADMM-H NCSR CSF LFCNN MPRNET SelfDeblur FTOAC INFWIDE TV LECTVcry
PSNR 27.17 2791 2752 31.85 26.11 25.87 24.36 2486 2395 2568 29.02  33.50
SSIM 0.7677 0.8043  0.8009 0.91950.7509 0.7680 0.8174 0.8274 0.8217 0.8496 0.8359 0.9359
PSNR 26.26  27.90 2745 33.01 25.09 2528  23.76 2434 2273 2445 29.84 3540
SSIM 0.7111 0.7864  0.7768 0.9297 0.6922 0.7217  0.7822 0.7998 0.7511 0.8158 0.8424 0.9483
PSNR 26.37 28.24 2773 34.12 2499 2544 2372 2470 2229 2520 30.57  37.00
SSIM 0.7111 0.8023  0.7914 0.94100.6882 0.7277  0.7797 0.8117 0.7266 0.8342 0.8625 0.9615
PSNR 2543  27.10 26.62 32.76 24.14 24.73 23.02 2455  21.62 2492 2982  37.64

GaussianA

GaussianB

GaussianC

SquareA SSIM 0.6655 0.7516  0.7399 0.9226 0.6390 0.6855 0.7536 0.8056 0.6882 0.8283 0.8405 0.9690
SquareB PSNR 24.13  25.28 2491 29.93 23.08 23.68 2201 23.69 2098 2374 2821  35.22
SSIM 0.60 0.6596  0.6497 0.8662 0.5761 0.6230 0.7188 0.7754 0.6664 0.800 0.7879 0.9447
MotionA PSNR 2595 28.13 27.38  37.04 2420 2391 24.85 2070  20.61 2359 33,53  37.28
SSIM 0.7108 0.8113  0.7960 0.9613 0.670 0.6885 0.8346 0.6667 0.6739 0.8189 0.9203 0.9432
MotionB PSNR 23.93 2541 2472 33.64 22.17 22.57 19.11 19.93 1941 2190 2876  36.42

SSIM 0.6140 0.7017  0.6836 0.9238 0.5597 0.6020  0.6258 0.6653 0.6273 0.7697 0.7924  0.9336

(¢) ADMM-C (d) ADMM-H (e) NCSR

(g) LFCNN

(h) MPRNET (i) SelfDeblur (j) FTOAC (k) INFWIDE A TV (m) LECTVcry (n) Clear

Fig. 7. Visual examples: GuassianA.

(h) MPRNet (i) SelfDeblur (j) INFWIDE (k) FTOAC (m) LECTVcry (n) Clear

Fig. 8. Visual examples: SquareA.

WLRTR and OLRT reach the second and third rankings after index (Time/s) of HL has an insightful advantage over others.
LECTV in terms of quantification metrics values, but they Although the HL method for a single image takes the least
spend more time than LECTV. According to Table IV, the time  time, its restoration result for HSI is not ideal, as observed by
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(n) Clear

TABLE IV
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT METHODS ON CAVE DATASET

Methods HL FPD SSTV WLRTR OLRT LECTVcry LECTVcurv
PSNR 38.06 43.41 36.74 48.45 48.78 50.84 50.89
SSIM 0.9535 0.9810 0.9490 0.9904 0.9904 0.9944 0.9946
Case A SAM 0.0657 0.0626 0.0699 0.0991 0.1025 0.0535 0.0519
ERGAS 75.86 41.97 88.79 21.12 20.11 16.48 16.03
Time/s 5.86 88.63 317.23 1129.20 854.84 540.45 700.50
PSNR 38.19 43.78 36.31 49.51 50.02 52.19 52.30
SSIM 0.9523 0.9814 0.9459 0.9920 0.9926 0.9956 0.9959
Case B SAM 0.0901 0.0672 0.0647 0.0740 0.0909 0.0514 0.0475
ERGAS 74.38 39.91 91.60 18.50 17.33 13.94 13.50
Time/s 5.72 93.33 303.81 1124.33 848.98 580.10 625.21

(a) Blurred (b) Restoration by LECTVcry
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Fig. 10. Evolution of the objective function and PSNR value in the restoration
process for TV and LECTV Ty on the flower image.

visual results in Fig. 11. Fig. 12 draws the specific PSNR
and SSIM curves with respect to each band of ‘fake and
real strawberries’ data. The SSIM and PSNR values based on
the WLRTR, OLRT, and LECTV methods are all in the first
echelon and overall higher than those of the HL, FPD, and

SSTV methods. Then, it is concluded that LECTV achieves the
best results on PSNR and SSIM indexes for almost all bands.
Further, it can be obtained from quantitative evaluations in
Table IV that the average PSNR and SSIM values of LECTV
is optimal are higher than those of WLRTR and OLRT.

Furthermore, from visual restoration results in Fig. 11,
it gets that the HL cannot obtain satisfactory results for
MSI restoration. Comparing to HL, SSTV and FPD are
visually superior, but still do not have ideal restoration results.
In contrast, WRLTR, OLRT, and the proposed LECTV exhibit
better performance. And they can recover the detail infor-
mation better and generate images with sharper edges and
textures.

Fig. 13 shows spectral curves at spatial positions
(326, 136) of ‘chart and stuffed toy’ data and (373, 64) of
‘stuffed toys’. In particular, Fig. 13 plots the spectral curves
between the restored spectrum with different methods and the
original spectrum, where the Pearson correlation coefficients
and Root Mean Square Error (RMSE) values are presented in
the legend. Then, it evaluates the spectral curve in Fig. 13
with quantitative indices analysis. Table IV summaries the
evaluation results on the spectral quality of the recovered
HSI. It further verifies that LECTV can better restore the
original spectrum by the spectral evaluation metrics SAM and
ERGAS in Table IV. From Case A in Table 1V, it follows
that the LECTVcry has the optimal result on SAM and
the LECTVchry is evaluated to be highest on ERGAS.
In Case B, LECTVcyrv and LECTV vy obtain the optimal
and sub-optimal values on SAM and ERGAS, respectively.
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(g) OLRT (h) LECTVery () LECTVeurv
Fig. 11.  Visual examples of restoration results on ‘chart and stuffed toy’
(band 24).
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Fig. 12. PSNR and SSIM values of each band on ‘fake and real strawberries’
data (Case A).
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Fig. 13. Spectral curves and their corresponding quantitative index with the

original spectrum (a) position (326, 136) of ‘chart and stuffed toy’ in Case A;

(b) position (373, 64) of ‘stuffed toy’ in Case A; ‘P’ and ‘R’ denote the
pearson correlation coefficient and the root mean square error, respectively.

It further reflects that the proposed model can effectively
recover the spectral information of HSI.

2) Experimental Results Analysis of HSI: Table V shows the
evaluation results of seven methods on HSI datatset. As shown
in Table V, LECTVchgrv have reached the best value on
three quantitative metrics: PSNR, SSIM, and ERGAS, and

8557
1=
50 Blurred FPD ——WLRTR ——LECTV;p,
HL ——S8STV ——OLRT 7LECWCHTV
Blurred ——WLRTR
0.5 ~———HL  ——OLRT
FPD iLECTVCW
0.4 ——ssTv. ——LECTVgpy
0 50 100 150 200 0 50 100 150 200
Band Numbers Band Numbers
(a) PSNR (b) SSIM

Fig. 14. PSNR and SSIM values of each band on urban (Case A).
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(h) LECTVcry

(i) LECTVcurv

Fig. 15. Visual examples of restoration result on urban.

the second-best SAM value. Fig. 14 draws the PSNR and
SSIM values of the restoration results on each band of Urban
data. It is observed that the curves of LECTV, WLRTR, and
OLRT are in the first echelon and overall higher than those
of FPD, SSTV, and HL. Specifically, the PSNR and SSIM
values of LECTVcyty reach the highest values in almost all
bands, and LECTVcty also displays excellent performance.
In addition, it can be inferred from Time/s index in Table V
that the LECTV takes less time than the tensor-based OLRT
and WLRTR, which reflects the superiority of the proposed
LECTV method.

Fig. 15 shows the visual results of different algorithms on
Urban data. It can be seen that Figs. 15(h)-(i) have excellent
visual quality with the proposed LECTV method. In contrast,
the HL fails to produce a satisfactory result. Although the
performances of SSTV and FPD are better than HL, they
do still not have the ideal performance. Especially, there
exist obvious ringing artifacts of FPD results at the edge
positions from Fig. 15(d). In Fig. 15(e), it can be observed
that the resulting SSTV has obvious blurring residues. Overall,
WLRTR, OLRT, and LECTV are superior than HL, SSTV,
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TABLE V
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT METHODS ON HSI DATASET
Methods HL FPD SSTV WLRTR OLRT LECTVcry LECTVcurv
PSNR 28.42 33.16 28.59 40.52 42.01 42.19 42.53
SSIM 0.7582 0.9209 0.7760 0.9799 0.9847 0.9853 0.9863
Case A SAM 0.0887 0.0608 0.0873 0.0399 0.0365 0.0390 0.0374
ERGAS 153.31 88.84 150.50 38.34 32.35 31.53 30.49
Time/s 14.11 176.69 622.91 2435.01 1739.05 1044.47 1401.42
PSNR 28.25 33.59 29.53 42.15 43.56 43.69 44.14
SSIM 0.7474 0.9277 0.8046 0.9852 0.9887 0.9890 0.9899
Case B SAM 0.0909 0.0588 0.0812 0.0349 0.0314 0.0322 0.0318
ERGAS 156.23 84.46 135.54 27.13 31.84 26.58 25.44
Time/s 13.95 175.55 556.38 2455.69 1737.56 1235.61 1567.49
TABLE VI

P=0.9989,R=0.0965
P=0.9986,R=0.0517
P=0.9982,R=0.0127
P=0.9989,R=0.0424

P=0.9885,R=0.1125
P=0.9963,R=0.0982
P=0.9997,R=0.0078
P=0.9974,R=0.0899
P=0.9997,R=0.0056
P=0.9997,R=0.0059
P=0.9998,R=0.0050

oty P=0-9998,R=0.0041

P=0.9994,R=0.0083
OLRT P=0.9992,R=0.0078
P=0.9997,R=0.0036

LECTV,, ., P=0.9998,R=0.0033

PAT =
P .
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(b) Pixel (126, 150)

(a) Pixel (105, 163)

Fig. 16. Spectral curves and their corresponding quantitative index with the
original spectrum. (a) position (105, 163) of Urban in Case A; (b) position
(126, 150) of Pavia University in Case A; ‘P’ and ‘R’ represent the Pearson
correlation coefficient and the Root Mean Square Error, respectively.

and FPD in terms of visual performance. They can effectively
restore images and achieve better detail effects, visually. With
comprehensive quantitative and qualitative evaluation, LECTV
achieves satisfactory results on HSI deblurring.

Fig. 16 presents the spectral features at spatial positions
(105, 163) of Urban and (126, 150) of Pavia University.
From Fig. 16, we find that LECTV is closer to ground-truth
(clear) than other competitors. It is obvious that the closer the
recovery curve is to the original spectral curve, the better the
quality of the recovery. Furthermore, a quantitative analysis
of curves in Fig. 16 is conducted to calculate the Pearson
correlation coefficient and RMSE attached in the legend of
Fig. 16. The quantitative results also prove the superiority
of our developed LECTV method, which is consistent with
evaluation results in Table V. From Table V, LECTVcyrv
achieves the best performance on ERGAS value and the
second-best performance on SAM in Cases A and B. It shows
the superiority of the proposed method in preserving spectral
information. Compared with LECTVcry, the improved per-
formance of LECTVcyrv in HSI experiments also indicates
the effectiveness of LECTVcyty in spectral compensation.
Besides, LECTVcyry also shows the optimal values in terms
of PSNR and SSIM.

After conducting the aforementioned analysis, it is evi-
dent that the proposed LECTV method demonstrates superior
performance, both visually and quantitatively. This indicates

PERFORMANCE OF MORE BLUR SCENES

Case Index Dataset1 Dataset1 Dataset3
Motion1 PSNR 29.99 31.26 31.26
SSIM 0.8835 0.8684 0.8684
. PSNR 31.22 09141 32.63
Motion2
SSIM 09141 0.9050 0.9077
. PSNR 29.47 31.87 30.85
Motion3
SSIM 0.8909 0.9061 0.8743
. PSNR 25.77 26.96 28.31
Disk1
SSIM 0.7836 0.7816 0.8019

that LECTV cyry effectively leverages the advantages of prior
knowledge regarding blurry images and the spatial-spectral TV
model. The spatial-spectral TV model efficiently compensates
for interfered information based on the spatial and spectral
correlations of HSI, removing relatively heavier blur and noise
in specific bands. Additionally, the per-pixel adaptive con-
straint further enhances compensation for detailed information.
As a result, LECTV takes reliable performance in terms of
recovering both spatial and spectral information.

E. Discussion

In previous subsections, experimental results have demon-
strated the effectiveness and superiority of the proposed
method in Gaussian blur, square blur, and simple motion
blur. This subsection further discusses whether the proposed
LECTV remains advantageous in more complex motion blur
cases and defocus blur. Utilizing three motion blur kernels
in [77], three experiments (Motionl, Motion2, and Motion3)
are redesigned to evaluate the performance of our method in
a wider range of scenarios, and the corresponding experiment
results are listed in Table VI. From [1], the settings are selected
for defocus blur, where a disk kernel, denoted as Disk1l, with
a radius of 5 is used for a simple simulation. In addition,
we setup the noise level of 0.002 in each experiment to
simulate the noise conditions. Table VI summaries the quanti-
tative evaluation results. Fig. 17 showcases the restored visual
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(c) Blurred (Diskl1)

(d) Ours/29.17dB

Fig. 17. Illustration of the more blur results.

outcomes. According to Table VI and Fig. 17, we can conclude
that the presented method displays the reliable and excellent
performance under higher noise level and more complex blur
scenes.

However, the aforementioned settings in practice do not
accurately model the complex defocus blur. Since defocus
blur typically involves the issue of focusing light in front
of or behind the focal plane, it results in different focal
points at different locations in the image. For spatially varying
defocus blur in a certain scenario, it needs to match a specific
processing method, such as the estimation of the depth map
and blur kernel, etc., which will be also considered in our
future work.

V. CONCLUSION

This paper developed a constrained TV model guided by
blurred image priors for natural and hyperspectral image
deblurring. In contrast to the existing DCP-based methods
with only considering the overall sparse property of the image
dark channel, our proposed method can adaptively charac-
terize per-pixel of image. From experiments on natural and
hyperspectral images, it finds that presented LECTV method
is capable of adaptively recovering different texture regions in
the image, including salient structure and detail information.
It is also concluded that our method performs better after com-
parison analysis on both visual observations and quantitative
evaluations. Nevertheless, there exist still some limitations of
our method, which is not capable of dealing with images sub-
ject to strong random noise or stripe noise. For these problems,
references [78] and [79] provide the modeling scheme for strip
noise-disturbed images, and the deblurring method for noisy
images, respectively. Inspired by [78] and [79], our future work
will develop the improved LECTV method to further enhance
the robustness and adaptation to noises. Besides, we hope
to integrate our proposed model into the DL-based image
deblurring method and extend it to subsequent tasks, such as
classification and object detection.
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