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Abstract— Because of the internal malfunction of satellite
sensors and poor atmospheric conditions such as thick cloud,
the acquired remote sensing data often suffer from missing
information, i.e., the data usability is greatly reduced. In this
paper, a novel method of missing information reconstruction
in remote sensing images is proposed. The unified spatial–
temporal–spectral framework based on a deep convolutional
neural network (CNN) employs a unified deep CNN combined
with spatial–temporal–spectral supplementary information. In
addition, to address the fact that most methods can only deal with
a single missing information reconstruction task, the proposed
approach can solve three typical missing information reconstruc-
tion tasks: 1) dead lines in Aqua Moderate Resolution Imaging
Spectroradiometer band 6; 2) the Landsat Enhanced Thematic
Mapper Plus scan line corrector-off problem; and 3) thick cloud
removal. It should be noted that the proposed model can use
multisource data (spatial, spectral, and temporal) as the input of
the unified framework. The results of both simulated and real-
data experiments demonstrate that the proposed model exhibits
high effectiveness in the three missing information reconstruction
tasks listed above.

Index Terms— Aqua Moderate Resolution Imaging Spectro-
radiometer (MODIS) band 6, cloud removal, deep convolu-
tional neural network (CNN), Enhanced Thematic Mapper
Plus (ETM+) scan line corrector (SLC)-off, reconstruction of
missing data, spatial–temporal–spectral.
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Fig. 1. Traditional missing information problems of remote sensing data.
(a) Dead lines in Aqua MODIS band 6. (b) Landsat ETM+ SLC-off.
(c) QuickBird image with thick cloud cover.

I. INTRODUCTION

THE earth observation technology of remote sensing is
one of the most important ways to obtain geometric

attributes and physical properties of the earth’s surface. How-
ever, because of the satellite sensor working conditions and the
atmospheric environment, remote sensing images often suffer
from missing information problems, such as dead pixels and
thick cloud cover [1], as shown in Fig. 1.

To date, a variety of missing information reconstruction
methods for remote sensing imagery have been proposed.
According to the information source, most of the
reconstruction methods can be classified into four main
categories [1]: 1) spatial-based methods; 2) spectral-based
methods; 3) temporal-based methods; and 4) spatial–
temporal–spectral-based methods. Details of these methods
are provided in the discussion in Section II. Although these
different approaches can acquire satisfactory recovery results,
most of them are employed independently, and they can only
be applied to a single specific reconstruction task in limited
conditions [4]. Therefore, it is worth proposing a unified
missing data reconstruction framework which can jointly
take advantage of auxiliary complementary data from the
spatial, spectral, and temporal domains, for different missing
information tasks, such as the dead lines of the Aqua Moderate
Resolution Imaging Spectroradiometer (MODIS) band 6,
the Landsat Enhanced Thematic Mapper Plus (ETM+) scan
line corrector (SLC)-off problem, and thick cloud removal.
Furthermore, most of the existing methods are based on
linear models, and thus have difficulty dealing with complex
scenarios and reconstructing large missing areas. Therefore,
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innovative ideas need to be considered to break through the
constraints and shortcomings of the traditional methods.

Recently, benefiting from the powerful nonlinear expression
ability of deep learning theory [5], convolutional neural net-
works (CNNs) [6] have been successfully applied to many
low-level vision tasks for remote sensing imagery, such as opti-
cal remote sensing image super-resolution [7], hyperspectral
image denoising [8], and pansharpening [9]–[13]. Therefore,
in this paper, from the perspective of deep learning theory and
spatial–temporal–spectral fusion [14], we propose a unified
spatial–temporal–spectral framework based on a deep convo-
lutional neural network (STS-CNN) for the reconstruction of
remote sensing imagery contaminated with dead pixels and
thick cloud. It should be noted that the proposed method can
use multisource data (spatial, spectral, and temporal) as the
input of the unified framework. The results of both simulated
and real-data experiments suggest that the proposed STS-CNN
model exhibits a high effectiveness in the three reconstruction
tasks listed above. The main contributions can be summarized
as follows.

1) A novel deep learning-based method is presented for
reconstructing missing information in remote sensing
imagery. The proposed method learns a nonlinear end-
to-end mapping between the missing data and intact data
with auxiliary data through a deep CNN. In the proposed
model, we employed residual output instead of straight-
forward output to learn the relations between different
auxiliary data. The learning procedure with residual unit
is much more sparse, and easier to approximate to the
original data through the deeper and intrinsic feature
extraction and expression.

2) We proposed a unified multisource data framework
combined with spatial–temporal–spectral supplementary
information to boost the recovering accuracy and con-
sistency. It should be noted that the proposed model can
use multiple data (spatial, spectral, and temporal) as the
input of the unified framework with the deep CNN for
different reconstructing tasks.

3) To address the deficiency that most methods can only
deal with a single missing information reconstruction
task, the proposed approach shows the universality of
various missing information reconstruction tasks such
as: 1) dead lines in Aqua MODIS band 6; 2) the Landsat
ETM+ SLC-off problem; and 3) thick cloud removal.
The simulated and real-data experiments manifest that
the proposed STS-CNN outperforms many current main-
stream methods in both evaluation indexes and visual
reconstructing perception.

The remainder of this paper is organized as follows. The
related works about the preexisting methods of missing infor-
mation reconstruction in remote sensing imagery are intro-
duced in Section II. The network architecture and specific
details of the proposed STS-CNN model are described in
Section III. The results of the missing data reconstruction
in both simulated and real-data experiments are presented
in Section IV. Finally, our conclusions and expectations are
summarized in Section V.

II. RELATED WORK

A. Spatial-Based Methods

The spatial-based methods, which are also called “image
inpainting” methods, are the most basic methods in image
reconstruction in the field of computer vision. These meth-
ods usually assume that undamaged regions have the
same or related statistical features or texture information
as the missing regions. In addition, the spatial relation-
ship between the global and local areas may also be con-
sidered in the reconstruction procedure. The spatial-based
methods include interpolation methods [15], [16], exemplar-
based methods [17]–[19], partial differential equation (PDE)-
based methods [20], [21], variational methods [22], [23], and
learning-based methods [24], [25]. For example, the interpola-
tion methods seek the weighted average of pixels of the neigh-
borhood area around the missing region, which is the most
commonly used method. The advantage of the interpolation
methods is that they are easy and efficient, but they cannot be
applied to the reconstruction of large missing areas or areas
with complex texture. Therefore, to solve this problem, some
new strategies have been presented, such as PDE-based meth-
ods and exemplar-based methods. Nevertheless, the application
scenarios of these methods are restricted by the specific texture
structure and the size of the missing areas. Recently, with
the development of deep learning, Pathak et al. [24] used
an encoder–decoder CNN and adversarial loss to recover
missing regions, and Yang et al. [25] further used Markov
random fields to constrain the texture feature and improve the
spatial resolution. However, these methods still cannot solve
the problem of reconstructing large areas with a high level of
precision.

In general, the spatial-based methods are qualified for recon-
structing small missing areas or regions with regular texture.
However, the reconstruction precision cannot be guaranteed,
especially for large or complex texture areas.

B. Spectral-Based Methods

To overcome the bottleneck of the spatial-based methods,
adding spectral information to the reconstruction of missing
data provides another solution. For multispectral or hyperspec-
tral imagery, there is usually high spatial correlation between
the different spectral data, which provides the possibility to
reconstruct the missing data based on the spectral information.

For example, since Terra MODIS bands 6 and 7 are
closely correlated, Wang et al. [26] employed a polynomial
linear fitting (LF) method between the data of Aqua MODIS
bands 6 and 7, whose missing data could be obtained by this
linear fit formula. Based on this idea, Rakwatin et al. [27] pre-
sented an algorithm combining histogram matching with local
least-squares fitting (HMLLSF) to reconstruct the missing
data of Aqua MODIS band 6. Subsequently, Shen et al. [28]
further developed a within-class local fitting (WCLF) algo-
rithm, which additionally considers that the band relationship
is relevant to the scene category. Furthermore, Li et al. [29]
employed a robust M-estimator multiregression method based
on the spectral relations between working detectors in Aqua
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MODIS band 6 and all the other spectra to recover the missing
information of band 6.

In conclusion, the spectral-based methods can recover the
missing spectral data with a high level of accuracy through
employing the high correlation between the different spectral
data. However, these methods cannot deal with thick cloud
cover, because this leads to the absence of all the spectral
bands to different degrees.

C. Temporal-Based Methods

Temporal information can also be utilized to recover the
missing data, on account of the fact that satellites can obtain
remote sensing data in the same region at different times.
Therefore, the temporal-based methods are reliant on the fact
that time-series data are strictly chronological and display
regular fluctuations. For instance, Scaramuzza and Barsi [30]
presented a local linear histogram matching (LLHM) method,
which is simple to realize and can work well in most areas if
the input data and auxiliary data are of high quality. However,
it often obtains poor results, especially for heterogeneous land-
scapes, where the feature size is smaller than the local moving
window size. Chen et al. [31] put forward a simple approach
known as neighborhood similar pixel interpolation (NSPI),
through combining local area replacement and interpolation,
which can even fill the SLC-off gaps in nonuniform regions.
Zeng et al. [32] proposed a weighted linear regression (WLR)
method for reconstructing missing data, using multitemporal
images as referable information and then building a regression
model between the corresponding missing pixels. Furthermore,
Li et al. [33] established a relationship map between the origi-
nal and temporal data, with multitemporal dictionary learning
based on sparse representation. Zhang et al. [34] presented
a functional concurrent linear model to address missing data
problems in series of temporal images. Chen et al. [35]
developed a novel spatially and temporally weighted regres-
sion (STWR) model for cloud removal to produce continu-
ous cloud-free Landsat images. Besides, Gao and Gu [36]
proposed tempo-spectral angle mapping (TSAM) method for
SLC-off to measure tempo-spectral similarity between pixels
described in spectral dimension and temporal dimension.

In summary, for the temporal-based methods, although
they can work well for a variety of situations such as thick
cloud and ETM+ SLC-off, the temporal differences are major
obstacles to the reconstruction process, and registration errors
between multitemporal images also have a negative impact on
the precision of the corresponding recovered regions.

D. Spatial–Temporal–Spectral-Based Methods

Despite the fact that many types of methods for the recon-
struction of missing information in remote sensing imagery
have been proposed, most of them have been developed
independently for a single recovery task. However, a few
researchers have attempted to explore a unified framework
to deal with the different missing information tasks with
spatial, temporal, and spectral complementary information. For
example, Ng et al. [4] proposed a single-weighted low-rank
tensor (AWTC) method for the recovery of remote sensing

images with missing data, which collectively makes use of the
spatial, spectral, and temporal information in each dimension,
to build an adaptive weighted tensor low-rank regularization
model for recovering the missing data. Besides, Li et al. [37]
also presented a spatial–spectral–temporal approach for the
missing information reconstruction of remote sensing images
based on group sparse representation, which utilizes the spatial
correlations from local regions to nonlocal regions, by extend-
ing single-patch-based sparse representation to multiple-patch-
based sparse representation.

Beyond that, the highly nonlinear spatial relationship
between multisource remote sensing images indicates that
higher level expression and better feature representation are
essential for the reconstruction of missing information. How-
ever, most of the methods based on linear models cannot
deal well with complex nonlinear degradation models, such
as image inpainting, super-resolution, and denoising. There-
fore, the powerful nonlinear expression ability of deep learn-
ing (e.g., CNNs) can be introduced for recovering degraded
images.

To date, to the best of our knowledge, no studies inves-
tigating CNNs for the reconstruction of missing information
in remote sensing imagery have made full use of the feature
mining and nonlinear expression ability. Therefore, we propose
a novel method from the perspective of a deep CNN combined
with joint spatial–temporal–spectral information, which can
solve all three typical missing information reconstruction
tasks: 1) the dead lines of Aqua MODIS band 6; 2) the
Landsat SLC-off problem; and 3) thick cloud cover. The
overall framework and details of the proposed method are
provided in Section III.

III. PROPOSED RECONSTRUCTION FRAMEWORK

A. Fundamental Theory of CNNs

With the recent advances made by deep learning for com-
puter vision and image processing applications, CNNs have
gradually become an efficient tool which has been success-
fully applied to many computer vision tasks, such as image
classification, segmentation, and object recognition [5]. CNNs
can extract the internal and underlying features of images and
avoid complex a priori constraints. CNNs are organized in
a feature map O(l)

j ( j = 1, 2, . . . M(l)), within which each

unit is connected to local patches of the previous layer O(l−1)
j

( j = 1, 2, . . . M(l−1)) through a set of weight parameters W (l)
j

and bias parameters b(l)
j . The output feature map is

L(l)
j (m, n) = F

(
O(l)

j (m, n)
)

(1)

and

O(l)
j (m, n) =

M(l)∑

i=1

S−1∑

u,v=0

W (l)
j i (u, v) · L(l−1)

i (m − u, n − v)+b(l)
j

(2)

where F(·) is the nonlinear activation function, and O(l)
j (m, n)

represents the convolutional weighted sum of the previous
layer’s results to the j th output feature map at pixel (m, n).
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Fig. 2. Flowchart of the STS-CNN framework for the missing information reconstruction of remote sensing imagery.

Furthermore, the special parameters in the convolutional layer
include the number of output feature maps j and the filter
kernel size S × S. In particular, the network parameters W
and b need to be regenerated through back-propagation and
the chain rule of derivation [6].

To ensure that the output of the CNN is a nonlinear
combination of the input, due to the fact that the relationship
between the input data and the output label is usually a highly
nonlinear mapping, a nonlinear function is introduced as an
excitation function. For example, the rectified linear unit is
defined as

F
(

O(l)
j

) = max
(
0, O(l)

j

)
. (3)

After finishing each process of the forward propagation,
the back-propagation algorithm is used to update the network
parameters to better learn the relationships between the labeled
data and reconstructed data. The partial derivative of the loss
function with respect to convolutional kernels W (l)

j i and bias

b(l)
j of the lth convolutional layer is, respectively, calculated

as follows:

∂L

∂W (l)
j i

=
∑

m,n

δ
(l)
j (m, n) · L(L−1)

j (m − u, y − v) (4)

∂L

∂b(l)
j

=
∑

m,n

δ
(l)
j (m, n) (5)

where error map δ
(l)
j is defined as

δ
(l)
j =

∑

j

S−1∑

u,v=0

W (l+1)
j i (u, v) · δ

(l+1)
j (m + u, n + v). (6)

The iterative training rule for updating the network parame-
ters W (l)

j i and b(l)
j through the gradient descent strategy is as

follows:
W (l)

j i = W (l)
j i + α · ∂L

∂W (l)
j i

(7)

b(l)
j = b(l)

j + α · ∂L

∂b(l)
j

(8)

where α is a hyperparameter for the whole network, which is
also named the “learning rate” in the deep learning framework.

B. Whole Framework Description

Aiming at the fact that most methods can only deal with
a single type of missing information reconstruction, the pro-
posed framework can simultaneously recover dead pixels and
remove thick cloud in remote sensing images. The STS-CNN
framework is depicted in Fig. 2.

To learn the complicated nonlinear relationship between
input y1 (spatial data with missing regions) and input y2
(auxiliary spectral or temporal data), the proposed STS-CNN
model is employed with converged loss between original
image x and input y1. The full details of this network are
provided in Section III-C.

C. Proposed STS-CNN Reconstruction Framework

Inspired by the basic idea of the image fusion strategy to
boost the spatial resolution, the proposed STS-CNN frame-
work introduces several structures to enhance the manifesta-
tion of the proposed network. The overall architecture of the
STS-CNN framework is displayed in Fig. 3. The label data
in the proposed model are the original image without missing
data as shown in the flowchart in Fig. 2. Detailed descriptions
of each component of STS-CNN are provided in the following.

1) Fusion of Multisource Data: As mentioned in Section II,
complementary information, such as spectral or temporal data,
can greatly help to improve the precision of the reconstruc-
tion as such data usually have a high correlation with the
missing regions in the surface properties and textural features.
Therefore, in the proposed STS-CNN framework, we input
two types of data into the network, one of which is the spatial
data with missing areas (input y1 in Fig. 4), and the other is
the complementary information, such as spectral or temporal
data (input y2 in Fig. 4).

For the dead lines in Aqua MODIS band 6, input y1 is
the spectral data with missing information, and input y2 is
the other intact spectral data as auxiliary information. For the
ETM+ SLC-off problem, input y1 is the temporal image with
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Fig. 3. Architecture of the proposed STS-CNN framework.

Fig. 4. Fusion of multisource data with convolutional layers and a concate-
nation layer.

missing information, and input y2 is another temporal image.
For removing thick cloud in remote sensing imagery, input y1
is a temporal image with regions covered by thick cloud, and
input y2 is another temporal image without cloud.

The two inputs, respectively, go through one layer of
convolution operation with a 3 × 3 kennel size, and generate
an output of 30 feature maps, respectively. The two outputs of
feature maps are then concatenated to the size of 3 × 3 × 60,
as shown in Fig. 4.

2) Multiscale Convolutional Feature Extraction Unit: In
the procedure for reconstructing the missing information in
remote sensing imagery, the procedure may rely on contextual
information in different scales, due to the fact that ground
objects usually have multiplicative sizes in different nonlocal
regions. Therefore, the proposed model introduces a multiscale
convolutional unit to extract more features for the multicontext
information. As shown in Fig. 5(a), the multiscale convolu-
tional unit contains three convolution operations of 3×3, 5×5,
and 7×7 kernel sizes, respectively. All three convolutions are
simultaneously conducted on the feature maps of the input
data, and produce feature maps of 20 channels, as shown
in Fig. 5(b). The three feature maps are then concatenated
into a single 60-channel feature map, such that the features
extracting the contextual information with different scales are
fused together for posterior processing.

3) Dilated Convolution: In image inverse problems such
as image inpainting [38], denoising [39], [40], and deblur-
ring [41], contextual information can effectively promote the

Fig. 5. Multiscale convolutional feature extraction block. (a) Example of
multiscale convolution operations of 3 × 3, 5 × 5, and 7 × 7 kernel sizes.
(b) Integral structure of the multiscale convolutional feature extraction block
in STS-CNN.

restoration of degraded images. Similarly, in deep CNNs,
it enhances the contextual information through enlarging the
receptive field during the convolution operations. In general,
there are two strategies to reach this target: 1) increasing
the layers of the network and 2) enlarging the size of the
convolution kernel filter. However, on the one hand, as the
network depth increases, the accuracy becomes “saturated”
and then rapidly degrades due to the back-propagation. On the
other hand, enlarging the size of the kernel filter can also
introduce convolution parameters, which greatly increases the
calculative burden and training times.

To solve this issue effectively, dilated convolutions are
employed in the STS-CNN model, which can both enlarge the
receptive field and maintain the size of the convolution kernel
filter. Differing from common convolution, the dilated convo-
lution operator can employ the same filter at different ranges
using different dilation factors. Setting the kernel size as 3×3
as an example, we have illustrated the dilated convolution
receptive field size in Fig. 6 in green. The common convolution
receptive field has a linear correlation with the layer depth,
in that the receptive field size Fdepth−i = (2i + 1) × (2i + 1),
while the dilated convolution receptive field has an exponential
correlation with the layer depth, where the receptive field size
Fdepth−i = (2i+1 − 1) × (2i+1 − 1). For the reconstruction
model, the dilation factors of the 3 × 3 dilated convolutions
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Fig. 6. Receptive field size (1, 2, and 4) with dilated convolution.
(a) 1-dilated. (b) 2-dilated. (c) 4-dilated.

Fig. 7. Dilated convolution in the proposed network.

from layer 2 to layer 6 are, respectively, set to 1, 2, 3, 2, and
1, as shown in Fig. 7.

4) Boosting of the Spatial–Temporal–Spectral Information:
To maintain and boost the transmitting of the spatial and spec-
tral/temporal information in the proposed method, a unique
structure was specially designed, as shown in Fig. 8.

To preserve the spatial information, the residual image
between the label and input 1 is transferred to the last layer
before the loss function, which is also equivalent to the
constructed part of the missing regions. As our input data and
output results are largely the same in intact regions, we define
a residual mapping

ri = y1
i − xi (9)

where y1
i (input 1 in Fig. 3) is the image with missing data, and

xi is the original undamaged image. Compared with traditional
data mapping, this residual mapping can acquire a more
effective learning status and rapidly reduce the training loss
after passing through a multilayer network. In particular, ri is
also just equivalent to the missing regions, outside which most
pixel values in the residual image are close to zero, and the
spatial distribution of the residual feature maps should be very
sparse, which can transfer the gradient descent process to a
much smoother hypersurface of loss to the filtering parameters.
Thus, searching for an allocation which is on the verge of the
optimal for the network’s parameters becomes much quicker
and easier, allowing us to add more layers to the network and
improve its performance.

Specifically for the proposed model, given a collection of
N training image pairs {xi , y1

i , y2
i }N , y2

i (input 2 in Fig. 3) is
the spectral or temporal auxiliary image, and � is the network
parameters. The mean squared error as the loss function in the

Fig. 8. Boosting of the spatial and spectral/temporal information.

Fig. 9. Skip connections in the proposed model. (a) Skip connection in the
multiscale convolutional unit. (b) Skip connection in the dilated convolution.

proposed model is defined as

loss(�) = 1

2N

N∑

i=1

∥∥φ
(

y1
i , y2

i ,�
) − ri

∥∥2
2. (10)

Furthermore, to ensure the spectral/temporal information
and reduce the spectral distortion, input 1 with filled missing
gaps by input 2 and mask is transferred to the subsequent
layer in the network, which can also enhance the feature of
auxiliary spectral/temporal information as the data transferring
with multilayers, as shown in Fig. 8.

5) Skip Connection: Although the increase of the network
layer depth can help to obtain more data feature expressions,
it often results in the gradient vanishing or exploding problem,
which causes the training of the model to be much harder.
To solve or reduce this problem, a new structure called the
skip connection is employed for the deep CNN. The skip
connection can pass the previous layer’s feature information
to its posterior layer, maintaining the image details and avoid-
ing or reducing the vanishing gradient problem. In the pro-
posed STS-CNN model, three skip connections are employed
in the multiscale convolution block [as shown in Fig. 9(a)],
where the input and output of the dilated convolution [upper
solid line in Fig. 9(b)] and the foregoing feature maps of the
spectral/temporal information connect with the feature maps
after the first and fourth dilated convolutions [lower solid line
in Fig. 9(b)].
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Fig. 10. Simulated recovery results of Terra MODIS band 6. (a) Terra MODIS band 6. (b) Simulated dead lines. (c) LF. (d) HMLLSF. (e) WCLF. (f) AWTC.
(g) STS-CNN.

IV. PROPOSED RECONSTRUCTION FRAMEWORK

A. Experimental Settings

In this paper, we used the single framework to solve three
tasks mentioned above. For different reconstructing tasks, the
corresponding training data are employed independently to
train the specific models, respectively. Details of our exper-
imental settings are given as below.

1) Training and Test Data: For the dead lines of Aqua
MODIS band 6, we selected original Terra MODIS imagery
from [42] as our training data set, since it has a high degree
of similarity. For the training of the network, we chose and
cropped 600 images of size 400 × 400 × 7 and set each patch
size as 40×40 and stride = 40. To test the performance of the
proposed model, another single example of the Terra MODIS
image was set up as a simulated image. In addition, for the
real dead lines of Aqua MODIS band 6, an Aqua MODIS L1B
500-m resolution image of size 400 ×400 ×7 was used in the
real-data experiments.

For the ETM+ SLC-off problem and the removal of thick
cloud, we used 16 different temporal Landsat Thematic Map-
per (TM) images from October 7, 2001 to May 4, 2002 (size of
1720×2040×6, 30-m spatial resolution) and arranged them in
sets of temporal pairs. These pairs of temporal data were then
cropped in each patch size as 100×100 and stride = 100 as the
training data sets. For the SLC-off problem and the removal
of thick cloud, another two single examples of two temporal
Landsat images (400×400×6) were set up as simulated images
with a missing information mask. Two actual ETM+ SLC-
off temporal images and two temporal images with/without
cloud were also tested for the real-data experiments. For
all the simulated experiments through different algorithms,

we repeated the reconstructing procedures with 10 times.
Mean and standard deviation values of the evaluation indexes
are listed in Tables I–IV, respectively.

2) Parameter Setting and Network Training: The proposed
model was trained using the stochastic gradient descent [43]
algorithm as the gradient descent optimization method, where
learning rate α was initialized to 0.01 for the whole network.
For the different reconstruction tasks, the training processes
were all set to 100 epochs. After every 20 epochs, learning rate
α was multiplied by a declining factor gamma = 0.1. In addi-
tion, the proposed network employed the Caffe [44] framework
to train in the Windows 7 environment, with 16-GB RAM,
an Intel Xeon E5-2609 v3@1.90-GHz CPU, and an NVIDIA
TITAN X (Pascal) GPU. The testing codes of STS-CNN can
be downloaded at https://github.com/WHUQZhang/STS-CNN.

3) Compared Algorithms and Evaluation Indexes: For the
dead lines in Aqua MODIS band 6, the proposed method
was compared with four algorithms: polynomial LF [26],
HMLLSF [27], WCLF [28], and AWTC [4]. The peak
signal-to-noise ratio (PSNR), the structural similarity (SSIM)
index [45], and the correlation coefficients (CCs) were
employed as the evaluation indexes in the simulated experi-
ments. For the ETM+ SLC-off problem, the proposed method
was compared with five algorithms: LLHM [30], NSPI [31],
WLR [32], TSAM [36], and AWTC [4]. For the removal of
thick cloud, the proposed method was compared with five
algorithms: LLHM [30], mNSPI [46], WLR [32], STWR [35],
and AWTC [4]. The mean PSNR and mean SSIM (mPSNR
and mSSIM) values of all the spectral bands, CCs, and spectral
angle mapper (SAM) [14] were employed as the evaluation
indexes in the simulated experiments.
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TABLE I

QUANTITATIVE EVALUATION RESULTS OF THE SIMULATED DEAD LINES IN TERRA MODIS BAND 6

TABLE II

QUANTITATIVE EVALUATION RESULTS OF THE SIMULATED SLC-OFF PROBLEM IN LANDSAT TM DATA

Fig. 11. Simulated ETM+ SLC-off recovery results with Landsat TM data. (a) Ground truth (October 23, 2001). (b) Simulated SLC-off. (c) Temporal data
(November 8, 2001). (d) LLHM. (e) NSPI. (f) WLR. (g) TSAM. (h) AWTC. (i) STS-CNN.

B. Simulated Experiments

1) Simulated Dead Lines in Terra MODIS Band 6: The
MODIS sensors on both the Aqua and Terra satellites have
similar design patterns, which makes it possible to con-
sider the reconstruction result of the simulated dead lines in
Terra MODIS as the approximate evaluation approach [1].
In Fig. 10, we present the simulated recovery results of
Terra MODIS band 6 through the five methods: LF [26],
HMLLSF [27], WCLF [28], AWTC [4], and the proposed
STS-CNN. In addition, the quantitative evaluations with
PSNR, SSIM, and CC are shown in Table I.

From the results in Fig. 10, LF shows obvious stripe
noise along the dead lines, on account that the relationship
between band 6 and band 7 relies on many complex factors,

and is not a simple linear regression correlation. For the
HMLLSF and WCLF methods, although the histogram
matching or preclassification-based linear regression strategy
can complete the dead pixels, some stripe noise still exists,
such as the enlarged regions in Fig. 10(d)–(f). This is
because the degraded image contains various object classes,
within which also exist internal differences rather than
homogeneous property in different regions. For the AWTC
method, although the weights in the different unfolding
are adaptively determined, the weights of the different
singular values are not taken into account. Meanwhile, for
the proposed STS-CNN method, the dead lines are well
recovered, and the local textures and overall tone are also
well preserved, without generating obvious stripe noise,
which can be clearly observed from the enlarged regions
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TABLE III

QUANTITATIVE EVALUATION RESULTS OF THE SIMULATED CLOUD REMOVAL IN LANDSAT TM DATA

TABLE IV

QUANTITATIVE EVALUATION RESULTS FOR THE LANDSAT TM DATA WITH BOTH ETM+ SLC-OFF AND THICK CLOUD

in Fig. 10(g). Furthermore, in terms of the three evaluation
indexes in Table I, the proposed method also obtains better
results than do LF, HMLLSF, WCLF, and AWTC.

2) Simulated ETM+ SLC-Off in Landsat TM Data: For
the Landsat ETM+ SLC-off problem, we simulated this in
TM data, as shown in Fig. 11(a) and (b), and employed a
temporal image, as shown in Fig. 11(c). We show the simulated
recovery results for the TM image through the six methods—
LLHM [30], NSPI [31], WLR [32], TSAM [36], AWTC [4],
and the proposed STS-CNN—in Fig. 11. To show the recov-
ery results more clearly, enlarged parts of the reconstructing
results are supplemented in Fig. 11, respectively. Furthermore,
the quantitative evaluations with mSSIM, mPSNR, CC, and
SAM are listed in Table II. As shown in Fig. 11(d)–(h),
the comparative methods all result in discontinuous detail fea-
ture to some degree. The reason is that different temporal data
exist a highly complex nonlinear relation, while the contrastive
methods above did not fit this situation well for missing
data reconstruction. In comparison, the proposed STS-CNN
model [Fig. 11(i)] performs better in reducing the spectral
distortion, and shows a superior performance over the state-
of-the-art methods in the quantitative assessment in Table II.
The powerful nonlinear expression ability of deep learning in
the proposed method is also verified.

3) Simulated Cloud Removal of Landsat Images: Similar to
the simulated experiment of ETM+ SLC-off, we also simu-
lated the thick cloud removal task in TM data with multitem-
poral data, as shown in Fig. 12(a)–(c). The simulated recovery
results for the TM image are shown in Fig. 12(d)–(i) for the six
methods: LLHM [30], mNSPI [46], WLR [32], STWR [35],
AWTC [4], and the proposed STS-CNN method, respectively.
The quantitative evaluations are shown in Table III. Clearly,
in Fig. 12(d)–(h), the results of LLHM, mNSPI, WLR, STWR,
and AWTC also show texture discontinuity or spectral dis-
tortion in some degree, because the relationship between
different temporal data is not a simple linear correlation, but
a highly complex nonlinear correlation. In contrast, the pro-

posed method performs well in reducing spectral distortion,
and shows a nice performance in the quantitative assessment
in Table III.

4) Simulated TM Data With Both Cloud and SLC-Off:
Considering that SLC-off data may also contain thick cloud, a
simulated experiment with both SLC-off and cloud cover was
undertaken to verify the effectiveness of the proposed method.
Fig. 13(d)–(g) shows the reconstruction outputs of LLHM,
NSPI, WLR, and the proposed STS-CNN model, respectively.
The quantitative evaluations with mSSIM, mPSNR, CC, and
SAM are listed in Table IV.

Clearly, for the reconstruction of remote sensing data with
both SLC-off and large missing areas, LLHM and mNSPI
cannot completely recover the cloud-covered regions, and the
result of WLR also shows texture discontinuity. In contrast,
the proposed STS-CNN model performs better in reducing
spectral distortion, and shows a better performance over
the state-of-the-art methods in the quantitative assessment
in Table IV.

C. Real-Data Experiments

1) Dead Lines in Aqua MODIS Band 6: The results of the
real-data experiment for reconstructing dead pixels in Aqua
MODIS band 6 are shown in Fig. 14(b)–(f), including the
outputs of LF, HMLLSF, WCLF, AWTC, and STS-CNN,
respectively. From the overall visual perspective, all these
methods can achieve reasonable outcomes with inconspicuous
dissimilarities. However, some stripe noise is still found in the
results of the comparative methods, as shown in the enlarged
regions of Fig. 14(b)–(e).

For the HMLLSF and WCLF methods, although the his-
togram matching or preclassification-based linear regression
strategy can complete the dead pixels, some stripe noise
still exists, such as the enlarged regions in Fig. 14(b)–(e).
This is because the degraded image contains various object
classes, within which also exist internal differences rather
than homogeneous property in different regions. For AWTC



ZHANG et al.: MISSING DATA RECONSTRUCTION IN REMOTE SENSING IMAGE 4283

Fig. 12. Simulated recovery results of cloud removal in Landsat TM data. (a) Ground truth (October 23, 2001). (b) Simulated SLC-off. (c) Temporal data
(November 8, 2001). (d) LLHM. (e) NSPI. (f) WLR. (g) STWR. (h) AWTC. (i) STS-CNN.

Fig. 13. Recovery results for the simulated Landsat TM data with both ETM+ SLC-off and thick cloud. (a) Ground truth (November 13, 2001). (b) Simulated
SLC-off. (c) Temporal data (April 17, 2002). (d) LLHM. (e) mNSPI. (f) AWTC. (g) STS-CNN.

method, it also produced some artifacts in enlarged regions
because of the complex relations between different bands.
In contrast, the proposed STS-CNN model [Fig. 14(e)] can
effectively recover the dead lines and simultaneously reduce
the artifact detail, such as stripe noise, as shown in the marked
regions of Fig. 14(f).

2) SLC-Off ETM+ Images: The results of the real-data
experiment for reconstructing Landsat ETM+ SLC-off data
are shown in Fig. 15, where Fig. 15(a) and (b) shows the two
temporal ETM+ SLC-off images observed on October 23,
2011, and November 8, 2011, respectively. Fig. 15(c)–(h)
shows the outputs of LLHM, NSPI, WLR, TSAM, AWTC,
and the proposed STS-CNN method, respectively. Because

the gaps cannot be completely covered by the single auxiliary
SLC-off image, there are still invalid pixels remaining, so the
land parameter retrieval model (LPRM) [42] algorithm was
employed after the processing of LLHM, NSPI, and WLR.
However, the proposed STS-CNN model does not require
LPRM to complete the residual gaps, as a result of the
end-to-end strategy. From the overall visual perspective, all
the methods can fill the gaps. However, for the five con-
trastive methods, some stripe noise can still be observed.
In comparison, the proposed method can both recover the
gaps and shows the least stripe noise, as shown in Fig. 15(h).
Furthermore, for the five other methods, some detail texture
is inconsistent or discontinuous in the reconstruction regions
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Fig. 14. Real recovery results for Terra MODIS band 6. (a) Aqua MODIS band 6. (b) LF. (c) HMLLSF. (d) WCLF. (e) AWTC. (f) STS-CNN.

Fig. 15. SLC-off reconstruction results for the real ETM+ SLC-off image. (a) SLC-off (temporal 1). (b) SLC-off (temporal 2). (c) LLHM + LPRM. (d) NSPI
+ LPRM. (e) WLR + LPRM. (f) TSAM. (g) AWTC. (h) STS-CNN.

of the dead lines, which can be clearly observed from the
enlarged region. Meanwhile, STS-CNN can simultaneously
preserve the detail texture and acquire a much more consistent
and continuous reconstruction result for the dead pixels.

3) Cloud Removal of TM Images: The results of the real-
data experiment for recovering a TM image with thick cloud
are shown in Fig. 16(a)–(h), where Fig. 16(a) and (b) shows
the two temporal TM images which contained thick cloud.
Fig. 16(c)–(h) shows the reconstruction outputs of LLHM,
NSPI, WLR, STWR, AWTC, and the proposed STS-CNN
method, respectively.

For LLHM, mNSPI, and AWTC, it can be clearly observed
that areas within the largest cloud contain some spectral

distortion. Besides, for reconstructing remote sensing data of
large missing areas, the results of mNSPI, WLR, and AWTC
also show texture discontinuity, because the relationship
between different temporal data is not a simple linear correla-
tion, but a complex nonlinear correlation. In addition, for the
WLR and STWR methods, the reconstruction texture details
of cloud areas are not inconsistent with no cloud areas around,
which cannot fit the nonlinear relation between different
temporal data. In contrast, the proposed STS-CNN method
performs better in reducing spectral distortion, and shows a
nice performance in the quantitative assessment in Table III.
For the proposed STS-CNN model, the texture details are
better reconstructed than for WLR and STWR, and the
spectral distortion is less than for LLHM, mNSPI and AWTC.
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Fig. 16. Real-data recovery results for cloud removal in Landsat TM data. (a) TM image with clouds. (b) TM image without clouds. (c) LLHM. (d) mNSPI.
(e) WLR. (f) STWR. (g) AWTC. (h) STS-CNN.

D. Further Discussion

1) Analysis of the Proposed Network Components: To ver-
ify the validity of the proposed model structure, three pairs
of comparison experiments with two simulated images were
carried out, as shown in Fig. 10 (simulated experiment for
dead lines in Terra MODIS band 6) and Fig. 11 (simulated
experiment for ETM+ SLC-off), respectively. Fig. 17 shows
the PSNR or mPSNR values obtained with/without: 1) the
multiscale feature extraction block; 2) dilated convolution; and
3) boosting of the spatial and temporal/spectral information
under the same setting environment. The iterations for all six
experiments were set to 500 000, and training models were
extracted every thousand iterations for testing.

For the multiscale feature extraction block, we can observe
that it can promote the accuracy of the reconstruction by
about 1/0.5 dB, as shown in Fig. 17(a) and (b), respectively,
indicating that extracting more features with multicontext
information is beneficial for restoring missing regions. For
the dilated convolution, Fig. 17(c) and (d) also confirms its
effectiveness, with a promotion of 0.2/0.4 dB, respectively.
With regard to the boosting of the spatial and temporal/spectral
information, Fig. 17(e) and (f) clearly demonstrates its effects
on the spatial and temporal/spectral information transfer in the
proposed STS-CNN model.

2) Effects of Image Registration Errors: For pairs of tem-
poral data, it should be stressed that registration errors cannot
be ignored, and they can affect the reconstruction results to
some extent. Therefore, we set registration errors of 0–5 pixels
in series for the simulated ETM+ SLC-off experiment with
LLHM, NSPI, WLR, and the proposed STS-CNN method.
Fig. 18(a)–(d) shows the reconstruction results of the compar-
ing algorithms with registration errors of two pixels, respec-
tively. In addition, four broken-line graphs of the four methods
are shown in Fig. 19(a)–(d), demonstrating the tendency of
mSSIM, mPSNR, CC, and SAM with the registration errors,
respectively. Clearly, the proposed method still obtains better

Fig. 17. Analysis of the effectiveness of the proposed network struc-
ture components. (a) With/without the multiscale feature extraction block
in Fig. 10. (b) With/without the multiscale feature extraction block in Fig. 11.
(c) With/without the dilated convolution in Fig. 10. (d) With/without the
dilated convolution in Fig. 11. (e) With/without the boosting of the spatial
and temporal/spectral information in Fig. 10. (f) With/without the boosting of
the spatial and temporal/spectral information in Fig. 11.

recovery results when compared with LLHM, NSPI, and
WLR, as shown in Fig. 18. As the image registration errors
increase, the degradation rate of the proposed method is the
lowest, compared with LLHM, NSPI, and WLR. One possible
reason for this may be that these linear models are heavily
dependent on the corresponding relationship of neighborhood
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Fig. 18. Reconstruction example with two-pixel image registration errors.
(a) LLHM. (b) NSPI. (c) WLR. (d) STS-CNN.

Fig. 19. Analysis of the effect of image registration error on the reconstruc-
tion. (a) mSSIM. (b) mPSNR (dB). (c) CC. (d) SAM.

pixels, whose reconstruction accuracy is seriously restricted
by image registration errors. In contrast, the recovery method
based on a deep CNN can effectively take advantage of
its powerful nonlinear expression ability, and can enlarge
the size of the contextual information, which can help to
resist or reduce the negative impact of image registration
errors, as can be observed in Fig. 19.

V. CONCLUSION

In this paper, we have presented a novel method for the
reconstruction of remote sensing imagery with missing data,
through a unified spatial–temporal–spectral framework based
on a deep CNN. Differing from most of the inpainting
methods, the proposed STS-CNN model can recover different
types of missing information, including the dead lines in

Aqua MODIS band 6, the Landsat SLC-off problem, and
thick cloud removal. It should be noted that the proposed
model uses multisource data (spatial, spectral, and temporal
information) as the input of the unified framework. Further-
more, to promote the reconstruction precision, some spe-
cific structures are employed in the network to enhance the
performance. Compared with other traditional reconstruction
methods, the results show that the proposed method shows
a significant improvement in terms of reconstruction accu-
racy and visual perception, in both simulated and real-data
experiments.

Although the proposed method performs well for recon-
structing the dead lines in Aqua MODIS band 6, the ETM+
SLC-off problem, and thick cloud removal, it still has some
unavoidable limitations. When removing thick cloud through
the use of temporal information, it results in some spectral
distortion and blurring. Another possible strategy which will
be explored in our future research is adding an a priori
constraint (such as NSPI [47], locality-adaptive discriminant
analysis [48], embedding structured contour and location [49],
and context transfer [50]) to reduce the spectral distortion and
improve the texture details.
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