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Abstract— Hyperspectral image (HSI) denoising is a crucial
preprocessing procedure to improve the performance of the sub-
sequent HSI interpretation and applications. In this paper, a novel
deep learning-based method for this task is proposed, by learning
a nonlinear end-to-end mapping between the noisy and clean
HSIs with a combined spatial–spectral deep convolutional neural
network (HSID-CNN). Both the spatial and spectral information
are simultaneously assigned to the proposed network. In addition,
multiscale feature extraction and multilevel feature representa-
tion are, respectively, employed to capture both the multiscale
spatial–spectral feature and fuse different feature representations
for the final restoration. The simulated and real-data experiments
demonstrate that the proposed HSID-CNN outperforms many
of the mainstream methods in both the quantitative evaluation
indexes, visual effects, and HSI classification accuracy.

Index Terms— Hyperspectral image (HSI) denoising, spatial–
spectral, convolutional neural network (CNN), multiscale feature
extraction.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs), which simultaneously
acquire both spatial and spectral information, have

already been applied in many remote sensing applications,
such as classification [1], [2], target detection [3], and
unmixing [4]. Nevertheless, because of sensor internal
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malfunction, photon effects, and atmospheric interference,
HSIs often suffer from various types of noise, such as random
noise, stripe noise, and dead pixels [5]–[7]. This greatly affects
the subsequent processing for information interpretation and
understanding [8]–[10]. Therefore, it is critical to reduce the
noise in HSIs and improve their quality before HSI analysis
and interpretation.

A variety of HSI denoising methods have been proposed
over the last decades [11]–[25]. The most fundamental
strategy is to apply a conventional 2-D image denoising
method to the HSI band by band. For example, nonlocal
self-similarity (NSS)-based methods such as block-matching
and 3-D (BM3D) filtering (BM3D) [26] and weighted
nuclear norm minimization [27] or learning-based methods
such as expected patch log likelihood [28] can also be
directly employed for HSI denoising. However, these band-
by-band denoising methods usually lead to larger spectral
distortion [22], since the correlation of the spatial and spectral
information between different bands is not simultaneously
taken into consideration [23]–[25].

Therefore, from the point of view of combined spatial–
spectral constraints, many scholars have jointly utilized the
spatial and spectral information to reduce HSI noise [23].
Although these spatial–spectral HSI denoising methods can
achieve relatively better results, the good performance must
precisely tune parameters for each HSI [24]. This generates
the unintelligent and time consuming for different HSI data.
Besides, because the noise exists in both spatial and spectral
domains with unequal strength, these methods are insufficient
to satisfy this complex situation, and tend to produce the
over-smooth or spectral distortion in more complex noise
scenario [30], [31]. Therefore, it is significant to build a fast,
efficient, and universal framework to adapt different HSI data
with different situations.

Recently, the deep learning theory [32] solving the complex
problem with an end-to-end fashion can provide a prominent
strategy to solve the mentioned insufficient of existing
methods. These type methods exploit feature representations
learned exclusively from abundant data, instead of hand-
crafting features that are mostly designed based on domain-
specific knowledge [33]. DL has also been introduced into
the geoscience and remote sensing community for data
interpretation, analysis, and application [34], [35], including
aerial scene classification [36], [37], caption generation [38],
synthetic aperture radar image interpretation [39], and
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pansharpening [40]. In terms of nature image denoising task,
some scholars such as Mao et al. [41] and Zhang et al. [42]
employed convolutional neural networks (CNNs) to extract
the intrinsic and different image features and avoid a complex
priori constraint, which achieved state-of-the-art performance
on nature image denoising. However, these denoising methods
are lack of universality for HSI denoising, which do not
consider the characteristics of spectral redundancy in HSI
data. Therefore, how to combine with the spatial–spectral
strategy and deep learning is significant for HSI denoising.

In this paper, considering that image noise in HSI data
can be expressed through deep learning models between clean
data and noisy data, we propose a combined spatial–spectral
residual network with multiscale feature extraction to recover
noise-free HSIs. In our work, both the spatial structure and
adjacent correlated spectra are simultaneously assigned to the
proposed network for feature extraction and representation.
The main ideas can be summarized as follows.

1) A novel spatial–spectral deep learning-based method
for HSI denoising is proposed, by learning a nonlinear
end-to-end mapping between the noisy and clean HSIs
with a 2-D spatial and 3-D spatial–spectral combined
CNN. For better utilizing and mining the character of
single band and high correction of its adjacent band,
the proposed method develops a 2-D and 3-D combined
CNN. In first layer of the proposed model, 2D-CNN
can enhance the feature extraction ability of the single
band, and 3D-CNN can simultaneously utilize the high
correction and complementarity of its adjacent bands.

2) In remote sensing imagery, the feature expression
may rely on contextual information in different scales,
since ground objects usually have multiplicative sizes
in different nonlocal regions. Therefore, the proposed
model introduces a multiscale convolutional unit
to extract multiscale features for the multicontext
information, which can simultaneously get diverse
receptive field sizes for noise removal.

3) For different HSIs with different spectrum numbers
and diverse noise distributions, the proposed method
can effectively remove the noise in different HSIs with
only single model, which can simultaneously preserve
the local details and structural information of the HSI
without preset parameters adjusting.

The remainder of this paper is organized as follows.
In Section II, the HSI degradation model is described, and
then existing methods for HSI denoising is introduced. The
proposed HSID-CNN model and the related details are pre-
sented in Section III. The simulated and real-data experimental
results and a discussion are presented in Section IV. Finally,
our conclusions are given in Section V.

II. RELATED WORK

A. Hyperspectral Noise Degradation Model

HSI data can be denoted by 3-D cube Y of size M × N × B ,
whose degradation model can be described as

Y = X + V (1)

where X is the ideal noise-free data, V = [v1, v2, . . . , vB ]
is the additive noise with the Gaussian distribution
vn ∼ ξ(0, σ 2

n ), and 1 ≤ n ≤ B and σ 2
n mean that the noise

intensity varies in the nth spectra. Hence, the HSI denoising
process is to estimate the original data X from the noisy
observation Y.

B. Analysis of the Existing HSI Denoising Methods

Up to now, there are two main types of HSI denoising
methods: 1) transform-domain-based methods and 2) spatial-
domain-based methods. The transform-domain-based methods
attempt to separate clear signals from the noisy data
by various transformations, such as principal component
analysis (PCA), Fourier transform, or wavelet transform. For
example, Atkinson et al. [11] presented an estimator utilizing
discrete Fourier transform to decorrelate the signal in the
spectral domain, and a wavelet transform was utilized for the
spatial filtering. Othman and Qian [12] employed a hybrid
spatial–spectral derivative-domain wavelet shrinkage noise
removal (HSSNR) method. This method depends on the
spectral derivative domain, where the noise level is elevated,
and benefits from the dissimilarity of the signal nature in the
spatial and spectral dimensions. The major weakness of this
type of approaches is that these methods are sensitive to the
selection of the transform function and cannot consider the
differences in the geometrical characteristics of HSIs.

To employ the reasonable assumption or prior, such as
total variation [13], nonlocal [14], [15], sparse representa-
tion [16], [17], and low-rank models [18]–[22], the spatial-
domain-based methods can map the noisy HSI to the
clear one in attempt to preserve the spatial and spectral
characteristics. For example, Yuan et al. [13] proposed a
spatial–spectral adaptive total variation denoising algorithm.
In addition, Chen et al. [14] also presented an extension of
the (BM4D) [15] algorithm from video data to HSI cube
data, with PCA for the noise reduction. Based on sparse
representation, Lu et al. [16] proposed a spatial–spectral adap-
tive sparse representation method. Furthermore, Li et al. [17]
exploited the intraband structure and the interband correla-
tion in the process of joint sparse representation and joint
dictionary learning. For an HSI, both the high spectral corre-
lation between adjacent bands and the high spatial similarity
within one band reveal the low-rank structure of the HSI.
Hence, Renard et al. [18] proposed a low-rank tensor approx-
imation (LRTA) method, which performs both spatial low-
rank approximation and spectral dimensionality reduction.
In addition, Zhang et al. [19] proposed a new HSI restoration
method based on low-rank matrix recovery (LRMR). Besides,
Zhao and Yang [20] investigated sparse coding to model the
global redundancy and correlation (RAC) and the local RAC in
the spectral domain, and then employed a low-rank constraint
to consider the global RAC in the spectral domain. Instead
of applying a traditional nuclear norm, Xie et al. [21] intro-
duced a nonconvex low-rank regularizer named the weighted
Schatten p-norm.

Although these HSI denoising methods can achieve rela-
tively better results, the good performance must precisely tune
parameters for each HSI [22]. This generates the unintelligent
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Fig. 1. Flowchart of the proposed HSID-CNN method for removing noise in HSI data.

Fig. 2. Structure of HSID-CNN.

and time consuming for different HSI data. Therefore, it is
significant to build a fast, efficient and universal framework to
adapt to different HSI data with different situations.

III. METHODOLOGY

A. Proposed Framework Description

Combined with the joint spatial–spectral strategy, we pro-
pose a novel DL-based method for HSI denoising with a
deep CNN (HSID-CNN) to overcome the shortages of existing
methods.

The flowchart of the proposed method is depicted in Fig. 1.
HSID-CNN learns a nonlinear end-to-end mapping between
the noisy data and original data with a deep CNN, which
simultaneously employs the simulated kth noisy band yspatial
and its adjacent bands yspectral. The joint spatial–spectral
data are then taken as the inputs of the proposed net-
work, adaptively updating trainable parameters through the
back propagation (BP) algorithm [33] with the residual output
ϕ. After training with a converged loss, the learned network
can be applied to the noise reduction for real HSI data. Details
of this network are provided as below.

B. Proposed Model for HSI Denoising

The overall architecture of the HSID-CNN framework is
displayed in Fig. 2. The input spatial data of size W × H
represent the current noisy band in the top-left corner.
Correspondingly, the input spectral data of size W × H × K
represent the current spatial–spectral cube with adjacent bands
in the bottom-left corner. Based on this joint spatial–spectral
learning strategy, one distinct advantage is that the proposed
method can deal with no matter how many bands in HSI data,
because the proposed HSID-CNN model only takes one single
spatial band (2-D) as denoising object each time for HSI data,
and its adjacent spectral bands (3-D) as auxiliary data. Then,
our method traverses all the bands through one-by-one mode,
which simultaneously employing spatial–spectral information
with spatial and spatial–spectral filters, respectively. The
detailed configuration of the proposed model is provided
in Table I.

1) Joint Spatial–Spectral Multiscale Feature Extraction:
As mentioned in Section I, the redundant spectral information
in HSIs can be of great benefit to improve the precision of
the restoration, since the spatial–spectral cube usually has a
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TABLE I

DETAILED CONFIGURATION OF HSID-CNN

Fig. 3. Joint spatial–spectral multiscale feature extraction. (a) Joint
spatial–spectral multiscale feature extraction block in proposed framework.
(b) Multiscale feature results with different convolution kernel sizes.

high correlation and similarity in the surface properties and
textural features. Therefore, for better utilizing and mining the
character of single band and high correction with its adjacent
band, the proposed method develops a 2-D and 3-D combined
CNN network. In the proposed framework, the current spatial
band and its K adjacent bands are simultaneously set as the
inputs in the proposed network. In Fig. 3(a) (top), 2-D con-
volution filters were employed to acquire spatial information
for single current band. Simultaneously, in Fig. 3(a) (bottom),
3-D convolution filters (including adjacent spectrum numbers)
were employed to acquire joint spatial–spectral information
for adjacent bands.

Furthermore, the feature expression may rely on contextual
information in different scales in remote sensing imagery,
since ground objects usually have multiplicative sizes in
different nonlocal regions. Therefore, the proposed model
introduces a multiscale convolutional unit to extract multiscale
features for the multicontext information, which can simulta-
neously get diverse receptive field sizes for noise removal.
To capture both the multiscale spatial feature and spectral
feature, the proposed method employs different convolutional
kernel sizes, as described in Fig. 3. The six outputs of the
feature maps are then concatenated into a single 120-channel
feature map. After extracting the contextual feature informa-
tion with different scales, both the spatial information and
spectral information can then be jointly utilized for posteriori
processing.

2) Deep CNN With Residual Learning Strategy: CNNs
exploit the spatially local features by enforcing a local

connectivity pattern between the convolutional junctions of
adjacent layers. Hidden units in layer l take as a subset
of units in layer l − 1, which form spatially contiguous
receptive fields, obtaining more information by collecting
and analyzing more neighboring pixels. Therefore, deeper
networks can usually exploit the high nonlinearity and obtain
more essential feature extraction and expression abilities.

However, as the layer depth increases, the common deep
networks can have difficulties in approximating identical
mappings by stacked flat structures such as the Conv-BN-
ReLU block [42]. In contrast, it is reasonable to consider
that most pixel values in residual image for restoration will
be very close to zero. In addition, the spatial distribution
of the residual feature maps should be very sparse, which
can transfer the gradient descent process to a much smoother
hypersurface of loss to the filtering parameters. Thus, it is
significant to search for an allocation which is on the verge
of the optimal for the network’s parameters. Therefore, in the
proposed model, the residual learning strategy is employed to
ensure the stability and efficiency of the training procedure.
The reconstructed output is represented with residual mode
instead of straightforward results. Residual learning can effec-
tively reduce the traditional degradation problem of the deeper
networks [43], allowing us to add more trainable layers to the
network and improve its performance. The residual noise ϕ is
defined as follows:

ϕ = x̂ − yspatial (2)

where x̂ is the original clean band. Specifically, for the
proposed HSID-CNN, given a collection of T training image
pairs {xi , yi

spatial, yi
spectral}T , yi

spatial is the noisy HSI as the
spatial data, yi

spectral is the corresponding noisy adjacent cube
as the spectral data, and xi is the clean HSI as the label.
Setting � as the network trainable parameters, our model uses
the mean-squared error as the loss function

loss(�) = 1

2T

T∑
i=1

∥∥Net
(

yi
spatial, yi

spectral,�
) − ϕi

∥∥2
2. (3)

3) Multilevel Feature Representation for Restoration: As
shown in Fig. 4(b)–(e), various levels of feature information
exist in different depth layers. To efficiently utilize these
comprehensive features between indirectly connected layers
without direct attenuation, therefore, it is worth merging these
different feature representations for the final restoration [44].
A multilevel feature representation unit in the proposed
method is employed by integrally concatenating the multiple
feature maps of the convolutional layers with different depths,
as shown in Fig. 5.

Besides, multilevel representation in the proposed model
can be regarded as multiple skip connections [40], which
have been verified the effectiveness for solving the vanishing
gradient problem [42]. The concatenated representation is
defined as

fc = Concat{ f3, f5, f7, f9} (4)

where f3, f5, f7, f9 stand for different-level feature rep-
resentations, as displayed in Fig. 4(b)–(e), respectively.
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Fig. 4. Various levels of feature information in different depth layers.
(a) Input data with spatial/spectral images. (b) Feature maps of the third
convolutional layer. (c) Fifth. (d) Seventh. (e) Ninth. (f) Output residual image.

Fig. 5. Multilevel feature representation in the proposed HSID-CNN.

The concatenated layer fc is then further employed to fuse
these combined feature representations for the final restoration

ϕ = Wc × fc + bc (5)

where Wc and bc stand for the weight parameters and bias
parameter of the last convolutional layer, respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the effectiveness of the proposed method,
both simulated and real-data experiments were performed,
as described below. The proposed method was compared with
the current mainstream methods of HSSNR [12], BM4D [15],
LRTA [18], and LRMR [19]. Before the denoising process,
the gray values of each HSI band were all normalized to
[0, 1]. MPSNR [45], MSSIM [46], and MSA [47] served as
evaluation indexes in the simulated experiments. Generally
speaking, in simulated experiments, better HSI denoising
results are reflected by higher MPSNR, MSSIM, and lower
MSA values. For the real-data experiments, the classification
accuracy of the HSI before and after denoising is listed
for comparison purposes with different algorithms. The test-
ing codes of the proposed method can be downloaded at
https://github.com/WHUQZhang/HSID-CNN.

1) Parameter Setting and Network Training: The adjacent
spectral band number K was set as the same during
all the training procedures, with K = 24 for both
the simulated and real-data experiments. An impact

analysis for the K value is provided in Section IV-C.
The proposed model was trained using the Adam [48]
algorithm as the gradient descent optimization method,
with momentum β1 = 0.9, β2 = 0.999, and ε = 10−8,
where the learning rate α was initialized to 0.01 for
the whole network. The training process of HSID-CNN
took 100 epochs. (An epoch is equal to about 1700 iter-
ations, batchsize = 128.) We employed the Caffe [49]
framework to train the proposed HSID-CNN on a PC
with 16-GB RAM, an Intel Xeon E5-2609 v3 CPU, and
an NVIDIA Titan-X GPU. The training process for each
model cost roughly 7 h 30 min. For training the proposed
model, the Washington dc Mall image obtained by the
Hyperspectral Digital Imagery Collection Experiment
airborne sensor [50], with a size of 1280×303×191, was
divided into two parts of 200×200×191 for testing and
other parts of 1080×303×191 for training. These train-
ing data were then cropped in each patch size as 20×20,
with the stride equal to 20. The simulated noisy patches
are generated through imposing additive white Gaussian
noise with different spectrums. The noise intensity is
multiple and conforms to a fixed distribution or random
probability distribution for different experiments. From
the point of view of increasing the number of HSI
training samples to better fit the HSI denoising mode,
multiangle image rotation (angles of 0°, 90°, 180°,
and 270°) and multiscale resizing (scales of 0.5, 1, 1.5,
and 2 in our training data sets) were both utilized during
the training procedure.

2) Test Data Sets: Three data sets were employed in the
simulated and real-data experiments, as follows. The
gray values of each HSI band were all normalized
to [0, 1].

a) The first data set was the Washington dc Mall
image mentioned above in Section IV-B, which
was cropped to 200 × 200 for the simulated-data
experiments. The image contained 191 bands after
removing the water absorption bands.

b) The second data set was the AVIRIS Indian Pines
HSI with a size of 145 × 145 × 220, which was
employed for the real-data experiments. A total
of 206 bands were used in the experiments after
removing bands 150–163, which are severely dis-
turbed by the atmosphere and water.

c) The third data set was acquired by the ROSIS and
covered the University of Pavia, Pavia, Italy. The
image scene is of 200 × 200 × 103 after removing
12 water absorption bands.

A. Simulated-Data Experiments

In the simulated HSI denoising process, the additional noise
was simulated as the following three cases.
Case 1: For different bands, the noise intensity is equal.

For example, σn are set from 5 to 100, as listed
in Table II.

Case 2: For different bands, the noise intensity is different
and conforms to a random probability distribution
(as shown in Table II “σn = rand(25)”).
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TABLE II

QUANTITATIVE EVALUATION OF THE DENOISING RESULTS OF THE SIMULATED EXPERIMENTS

Fig. 6. Results for the Washington dc Mall image with σn = 100 in Case 1. (a) Pseudocolor noisy image with bands (57, 27, 17). (b) HSSNR. (c) LRTA.
(d) BM4D. (e) LRMR. (f) Proposed method.

Case 3: For different bands, the noise intensity is also dif-
ferent, where the noise level σn is added along the
spectral axis and is varied like a Gaussian curve [10]

σn = β

√
exp{−(n − B/2)2/2η2}∑B
i=1 exp{−(i − B/2)2/2η2} (6)

where the intensity of the noise is restricted by β,
with η behaving like the standard deviation for
the Gaussian curve. In the simulated experiments,
the noise was defined as σn = Gau(β, η), where
β = 200 and η = 30.

To acquire an integrated comparison for the other methods
and the proposed HSID-CNN, quantitative evaluation indexes
(MPSNR, MSSIM, and MSA), a visual comparison, curves
of the spectra, and the spectral difference results were used
to analyze the results of different methods. The averages and

standard deviations of contrasting evaluation indexes of the
three cases with various noise levels and types in 10 times
are listed in Table II. To give detailed contrasting results,
σn = 100, σn = rand(25), and σn = Gau(200, 30) are
chosen to demonstrate the visual results, corresponding to
Figs. 6, 8, and 10, respectively. Due to the large number of
bands in an HSI, only a few bands are selected to give the
visual results in each case with pseudocolor. Fig. 6 shows the
denoising results of different methods in simulated Case 1 with
the pseudocolor view of bands 17, 27, and 57 (see enlarged
details in Fig. 7); Fig. 8 gives the denoising results of different
methods in simulated Case 2 (see enlarged details in Fig. 9);
Fig. 10 shows the denoising results of different methods in
simulated Case 3 (see enlarged details in Fig. 11). The values
of PSNR and SSIM within different bands of the restored HSI
are depicted to assess the per-band denoising result in Fig. 12.
Furthermore, to verify the outputs from the spectral point



YUAN et al.: HSI DENOISING EMPLOYING A SPATIAL–SPECTRAL DEEP RESIDUAL CNN 1211

Fig. 7. Magnified results for the Washington dc Mall image in Case 1. (a) Noise-free image. (b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed
method.

Fig. 8. Results for the Washington dc Mall image with σn = rand(25) in Case 2. (a) Pseudocolor noisy image with bands (57, 27, 17). (b) HSSNR. (c) iLRTA.
(d) BM4D. (e) LRMR. (f) Proposed method.

Fig. 9. Magnified results for the Washington dc Mall image in Case 2. (a) Noise-free image. (b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed
method.

Fig. 10. Results for the Washington DC Mall image with σn = Gau(200, 30) in Case 3. (a) Pseudocolor noisy image with bands (57, 27, 17). (b) HSSNR.
(c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed method.

Fig. 11. Magnified results for the Washington dc Mall image in Case 3. (a) Noise-free image. (b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed
method.

of view, the spectral curves of the restoration results are
displayed in Fig. 13. Meanwhile, the spectral difference curves
of the roof, grass, and road classes are also given in Fig. 14,
respectively.

In Table II, the best performance for each quality index
is marked in bold and the second-best performance for each
quality index is underlined. Compared with the other algo-
rithms, the proposed HSID-CNN achieves the highest MPSNR
and MSSIM values and the lowest MSA values in all the
noise levels, in addition to showing a better visual quality

in Figs. 6–12. Although the HSSNR algorithm has a good
noise reduction ability under weak noise levels, as shown in
Table II with σn = 5, it cannot well deal with strong noise
levels such as σn = 100, and the results still contain obvious
residual noise, especially in Figs. 6 and 7. LRTA performs well
under the equal noise intensity for different spectra in Table II;
however, it generates some fake artifacts in Figs. 6 and 7. From
Table II, BM4D shows a good noise reduction ability, under
both the uniform/nonuniform noise intensities for different
bands. However, it also produces over-smoothing in the results
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Fig. 12. PSNR and SSIM values of different denoising methods in each band of the simulated experiment with noise level σn = rand(25).

Fig. 13. Spectra of pixel (83, 175) in the restoration results. (a) Original.
(b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed method.

in Figs. 6–11, since the different nonlocal similar cubes in
the HSI may result in the removal of small texture features.
By exploring the low-rank property of the HSI, LRMR also
provides better denoising results. However, there are still some
noise residuals in the magnified areas in Fig. 7, especially for
the high-noise intensity condition such as σn = 100 in Fig. 6.

The spectral reflectivity is also crucial for HSI interpreta-
tion, such as classification, object detection, and unmixing [6],
due to the physical properties of different ground objects.
To validate the effectiveness after denoising in the spectral
dimension with different methods, Fig. 13 reveals the spectral
curves of pixel (83, 175) in the restoration results of HSSNR,
LRTA, BM4D, LRMR, and the proposed method, respectively.
The vertical axis named digital number (DN) stands for the
per-band value of the pixel in the same position, and the
horizontal axis represents the band number. As displayed

Fig. 14. Difference between the noise-free spectrum and the restoration
results of (a) roof class, (b) grass class, and (c) road class. Curves (1)–(6)
denote the results of the noisy image, HSSNR, LRTA, BM4D, LRMR, and
the proposed method, respectively.

in Fig. 13, the proposed method outperforms HSSNR, LRTA,
BM4D, and LRMR in terms of the performance in the spectral
dimension and is closest to the ground truth.

In addition, to reveal the changes in the spectral reflectance
after denoising, the spectral difference curves between the
noise-free spectrum and the restoration results of the roof class
at pixel (83, 175), grass class at pixel (105, 62), and road class
at pixel (48, 120) are given in Fig. 14(a)–(c), respectively.
In Fig. 14, the vertical axis of the figures represents the
DN value difference between the restoration results and the
noise-free HSI, and the horizontal axis represents the spectral
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Fig. 15. Results for the Indian Pines image. (a) Real image band 2.
(b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed.

band number. The difference curve of the proposed approach
is smoother than the other algorithms for all three classes,
with the residual value closer to zero, demonstrating that the
presented method is more reliable in preserving the original
spectral feature of the noisy HSI, as shown in Fig. 14.

B. Real-Data Experiments

To further verify the effectiveness of the proposed method,
two real-world HSI data sets were employed in our real-data
experiments. The classification accuracy of the HSI before
and after denoising is listed for comparison purposes with
different algorithms. Support vector machine (SVM) [51] was
employed as the classifier under the same environment for
all the restoration results. The overall accuracy (OA) and the
kappa coefficient are given as evaluation indexes.

1) AVIRIS Indian Pines Data Set: The first few bands
and several other bands of the Indian Pines HSI are seri-
ously degraded by Gaussian noise and impulse noise [52].
Figs. 15 and 16 show the denoising results of contrast and
the proposed method, which represent band number 2, and
the pseudocolor result with combined bands (2, 3, 203),
respectively.

In Figs. 15 and 16, it can be clearly seen that HSSNR can
reduce some of the noise, but some dense noise and stripes still
remain in the restored results. The LRTA method also shows
the ability of noise suppression, but some detailed information
is simultaneously smoothed and lost. BM4D does well in
suppressing noise, but it appears to be virtually powerless
against heavy striping. LRMR also behaves well in reducing
both noise and heavy striping. However, the restored result
of LRMR still shows obvious residual noise and stripes.
HSID-CNN performs the best, effectively removing the noise
and stripes, while simultaneously preserving the local details
and structural information of the HSI.

In the supervised classification experiment with the SVM
algorithm, 16 ground-truth classes were employed for testing
the classification accuracy. The training sets included 10%
of the test samples randomly generated from each class.

Fig. 16. Results for the Indian Pines image. (a) Pseudocolor noisy image
with bands (2, 3, 203). (b) HSSNR. (c) LRTA. (d) LRMR. (e) BM4D.
(f) Proposed.

Fig. 17. Classification results for the Indian Pines image using SVM before
and after denoising. (a) Ground truth. (b) Original. (c) HSSNR. (d) LRTA.
(e) BM4D. (f) MH. (g) LRMR. (h) Proposed method. (i) 16 classes.

The classification results with the Indian Pines image before
and after denoising are revealed in Fig. 17. The OA and
kappa coefficient are also given in Table III. Before denoising,
as shown in Fig. 17(a), the classification results appear discon-
tinuous, and the OA and kappa are only 75.96% and 0.7220,
respectively. After denoising, as shown in Fig. 17(c)–(h),
the OA and the kappa reveal different degrees of improvement.
However, the classification results of HSSNR, LRTA, and
LRMR still show an obvious fragmentary phenomenon, due
to the noise removal of the original data being incomplete.
BM4D, MH [53], and HSID-CNN suppress the fragmentary
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TABLE III

CLASSIFICATION ACCURACY RESULTS FOR INDIAN PINES

Fig. 18. Results for the Pavia University image. (a) Pseudocolor image with
bands (2, 3, 97). (b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed.

Fig. 19. Results for the Pavia University image. (a) Real image band 2.
(b) HSSNR. (c) LRTA. (d) BM4D. (e) LRMR. (f) Proposed.

effect in most regions of the image, whereas HSID-CNN
produces a better classification result, with the highest OA
and kappa values of 85.65% and 0.8338, respectively.

2) ROSIS University of Pavia Data Set: The noise is mainly
concentrated in the first bands of the ROSIS University of
Pavia HSI data. Figs. 18 and 19 show the denoising results
of HSSNR, LRTA, BM4D, LRMR, and the proposed method,
which represent the pseudocolor image with combined bands
(2, 3, 97) and band number 2, respectively.

In Figs. 18 and 19, it can be clearly observed that LRTA
cannot suppress the noise well. HSSNR and LRMR can reduce
some of the noise, but some nonuniform noise still remains

TABLE IV

CLASSIFICATION ACCURACY RESULTS FOR PAVIA UNIVERSITY

Fig. 20. Classification results for the Pavia University image using SVM
before and after denoising. (a) Ground truth. (b) Original. (c) HSSNR.
(d) LRTA. (e) BM4D. (f) MH. (g) LRMR. (h) Proposed method. (i) Nine
classes.

in the restored results. BM4D does well in suppressing
noise, but it also introduces over-smoothing in some regions.
HSID-CNN again performs the best, effectively removing the
noise, while simultaneously preserving the local details and
structural information, without obvious over-smoothing.

For Pavia University HSI data, the noise is mainly focused
in some of the first bands. Therefore, in order to better
manifest the denoising effects of different methods, the first
20 spectral bands were selected as the classification data. The
classification accuracy results in Table IV also confirm the
effectiveness of the proposed HSID-CNN, which acquires
the highest OA and kappa coefficient values of 86.99% and
0.8319. In Fig. 20, it can be clearly distinguished that the
proposed method can reduce the fragmentary effect better than
the HSSNR, LRTA, BM4D, MH, and LRMR methods.

C. Further Discussion

1) Adjacent Spectral Band Number K : As described in
Section III-B, the redundant spectral information in the
HSI can be of great benefit to improve the precision of
the restoration, since a spatial–spectral cube usually has
a high correlation and similarity in the surface properties
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Fig. 21. Restoration results under different numbers of adjacent spectra K/2.

Fig. 22. With/without multiscale feature extraction unit in Indian Pines HSI
data. (a) Original. (b) Without multiscale feature extraction unit. (c) With
multiscale feature extraction unit.

and textural features. Therefore, in the proposed framework,
the current spatial band and its K adjacent bands are
simultaneously set as the inputs in the proposed network,
employing a spatial–spectral strategy for HSI denoising.
Hence, the adjacent spectral band number K is a crucial para-
meter in the denoising procedure. In all of the simulated and
real-data experiments, the number of adjacent spectral bands
was set as K = 24. In fact, the choice of K has a large effect
on the restoration results of the proposed HSID-CNN method.
To explore the influence of K for HSID-CNN, Fig. 21 reveals
the quantitative evaluation results (MPSNR) with different
numbers of adjacent spectra K (the horizontal axis represents a
half value of K ) in the simulated experiment. It can be clearly
seen that the results of the proposed HSID-CNN method
first quickly rise with the increase of K , and when K = 24,
the results reach the highest MPSNR value. The results then
gradually descend with the increase of K . Clearly, the spatial–
spectral strategy is significant for the proposed method.

2) Multiscale Feature Extraction: In the procedure for
recovering the original information in HSI data, the feature
expression may rely on contextual information in different
scales, since ground objects usually have multiplicative sizes
in different nonlocal regions in remote sensing imagery.
Therefore, the proposed model introduces a multiscale con-
volutional unit to extract more features for the multicontext
information. To demonstrate the impact with/without multi-
scale feature extraction, two comparison experiments were
implemented with Indian Pines HSI data, as shown in Fig. 22.
Some stripe noise is still residuary in the enlarged regions,
where the model with multiscale feature extraction performs
better than the model without. This also certified that the
proposed unit is beneficial for extracting multiscale contex-
tual information, which is critical and universal for diverse-
resolution HSI denoising.

3) Multilevel Feature Representation: Due to the various
levels of feature information in different depth layers,

Fig. 23. HSI denoising results under different noise levels, with/without
multilevel feature representation.

TABLE V

COMPARISONS INDEXES WITH DL-BASED DENOISING METHODS

as displayed in Fig. 4(b)–(e), it is worth merging these different
feature representations for the final restoration. To efficiently
transfer these comprehensive features between indirectly
connected layers without attenuation, a multilevel feature
representation unit is employed in the proposed HSID-CNN, as
shown in Fig. 5. The unit integrality concatenates the multiple
feature maps of the convolutional layers (layers 3, 5, 7, and 9)
with different depths. To assess the impact on different levels
of noise with/without multilevel feature representation, two
comparison experiments were implemented with different
noise levels, as shown in Fig. 23. With the increase of
the noise intensity, the model with multilevel feature
representation performs better than the model without. It can
be clearly demonstrated that the proposed unit is beneficial for
suppressing strong noise, through merging different feature
representations for the final restoration.

4) Comparisons With DL-Based Denoising Methods: For
further verifying the designed deep learning-based structure,
we also compare with several CNN-based denoising method,
such as DnCNN [42] and 3-D extension of DnCNN with
nine layers (3D-DnCNN). The contrasting evaluation indexes
with noise level σn = 25 are listed in Table V. Fig. 24(b)–(d)
shows the denoising results with detailed parts of noisy image,
DnCNN, 3D-DnCNN, and the proposed method, which repre-
sent the pseudocolor result, respectively. Due to the ignoring of
spectral information, DnCNN only considers the spatial feature
through band-by-band mode, which does not completely
remove the spectral noise and damages spatial details for HSI
data. Therefore, the authenticity of this single band-based
denoising method is insufficient. This manifests that necessity
of spatial–spectral strategy in HSI processing. A 3D-DnCNN
employs the 3-D convolutions, which takes the joint spatial–
spectral information into consideration. Nevertheless, this
model does not make allowances for the scale difference
between ground objects in remote sensing data. In comparison,
the proposed method both achieves the best evaluation indexes
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Fig. 24. Comparisons with deep learning-based HSI denoising methods.
(a) Noisy. (b) DnCNN. (c) 3D-DnCNN. (d) Proposed.

TABLE VI

AVERAGE RUNTIME COMPARISONS FOR HSI DENOISING

METHODS IN THE SIMULATED EXPERIMENTS

and visual effects, which demonstrate the superiorities of the
combination with joint spatial–spectral strategy, multiscale
feature extraction, and multilevel feature representation.

5) Runtime Comparisons: For evaluating the efficiency of
denoising algorithms, we make statistics of average runtime
in the simulated experiments under the same environment
with MATLAB R2014b, as listed in Table VI. Distinctly,
HSID-CNN exhibits the lowest run-time complexity than
other HSI denoising algorithms with the GPU mode, because
of the high efficiency of end-to-end deep learning framework.

V. CONCLUSION

In this paper, we have proposed a deep learning-based
HSI denoising method, by learning a nonlinear end-to-end
mapping between the noisy and clean HSIs with a deep
combined spatial–spectral convolutional neural network
(named HSID-CNN). Both the spatial information and
adjacent correlated bands are simultaneously assigned to
the proposed network, where multiscale feature extraction
is employed to capture both the multiscale spatial feature
and spectral feature. The simulated and real-data experiments
indicated that the proposed HSID-CNN outperforms many of
the mainstream methods in both evaluation indexes, visual
effect, and classification accuracy of the denoising results.

In our future work, we will investigate more efficient
learning structures to remove the mixed noise in HSI data, such
as stripe noise, impulse noise, and deadlines [54]. Furthermore,
another possible strategy which will be explored in our subse-
quent research will be to add a priori constraint or structure to
the deep CNNs to reduce the spectral distortion and improve
the texture details.

REFERENCES

[1] J. C. Harsanyi and C.-I. Chang, “Hyperspectral image classification and
dimensionality reduction: An orthogonal subspace projection approach,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779–785,
Jul. 1994.

[2] H. Su, Y. Cai, and Q. Du, “Firefly-algorithm-inspired framework with
band selection and extreme learning machine for hyperspectral image
classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 10, no. 1, pp. 309–320, Jan. 2017.

[3] D. Manolakis and G. S. Shaw, “Detection algorithms for hyperspectral
imaging applications,” IEEE Signal Process. Mag., vol. 19, no. 1,
pp. 29–43, Jan. 2002.

[4] X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, “Manifold regularized sparse
NMF for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 5, pp. 2815–2826, May 2013.

[5] H. Su, Q. Du, G. Chen, and P. Du, “Optimized hyperspectral band
selection using particle swarm optimization,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2659–2670, Jun. 2014.

[6] A. Plaza et al., “Recent advances in techniques for hyperspectral image
processing,” Remote Sens. Environ., vol. 113, no. 1, pp. 110–122,
Sep. 2009.

[7] X. Lu, Y. Wang, and Y. Yuan, “Graph-regularized low-rank representa-
tion for destriping of hyperspectral images,” IEEE Trans. Geosci. Remote
Sens., vol. 51, no. 7, pp. 4009–4018, Jul. 2013.

[8] M. Lu et al., “Penalized linear discriminant analysis of hyperspectral
imagery for noise removal,” IEEE Geosci. Remote Sens. Lett., vol. 14,
no. 3, pp. 359–363, Mar. 2017.

[9] X. Sun, L. Zhang, H. Yang, T. Wu, Y. Cen, and Y. Guo, “Enhance-
ment of spectral resolution for remotely sensed multispectral image,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 5,
pp. 2198–2211, May 2015.

[10] H. Su, B. Zhao, Q. Du, P. Du, and Z. Xue, “Multifeature dictionary
learning for collaborative representation classification of hyperspec-
tral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 4,
pp. 2467–2484, Apr. 2018.

[11] I. Atkinson, F. Kamalabadi, and D. L. Jones, “Wavelet-based hyperspec-
tral image estimation,” in Proc. IEEE IGARSS, Jul. 2003, pp. 743–745.

[12] H. Othman and S.-E. Qian, “Noise reduction of hyperspectral imagery
using hybrid spatial-spectral derivative-domain wavelet shrinkage,” IEEE
Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 397–408, Feb. 2006.

[13] Q. Yuan, L. Zhang, and H. Shen, “Hyperspectral image denoising
employing a spectral–spatial adaptive total variation model,” IEEE
Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3660–3677, Oct. 2012.

[14] G. Chen, T. D. Bui, K. G. Quach, and S. E. Qian, “Denoising hyperspec-
tral imagery using principal component analysis and block-matching 4D
filtering,” Can. J. Remote Sens., vol. 40, no. 1, pp. 60–66, Jan. 2014.

[15] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, “Nonlocal
transform-domain filter for volumetric data denoising and reconstruc-
tion,” IEEE Trans. Image Process., vol. 22, no. 1, pp. 119–133,
Jan. 2012.

[16] T. Lu, S. Li, L. Fang, Y. Ma, and J. A. Benediktsson, “Spectral–spatial
adaptive sparse representation for hyperspectral image denoising,” IEEE
Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 373–385, Jan. 2016.

[17] J. Li, Q. Yuan, H. Shen, and L. Zhang, “Noise removal from hyperspec-
tral image with joint spectral–spatial distributed sparse representation,”
IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5425–5439,
Sep. 2016.

[18] N. Renard, S. Bourennane, and J. Blanc-Talon, “Denoising and dimen-
sionality reduction using multilinear tools for hyperspectral images,”
IEEE Trans. Geosci. Remote Sens., vol. 5, no. 2, pp. 138–142, Apr. 2008.

[19] H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, “Hyperspectral
image restoration using low-rank matrix recovery,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 8, pp. 4729–4743, Aug. 2014.

[20] Y.-Q. Zhao and J. Yang, “Hyperspectral image denoising via sparse
representation and low-rank constraint,” IEEE Trans. Geosci. Remote
Sens., vol. 53, no. 1, pp. 296–308, Jan. 2015.

[21] Y. Xie, Y. Qu, D. Tao, W. Wu, Q. Yuan, and W. Zhang, “Hyperspectral
image restoration via iteratively regularized weighted schatten p-norm
minimization,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8,
pp. 4642–4659, Aug. 2016.

[22] H. Fan, Y. Chen, Y. Guo, H. Zhang, and G. Kuang, “Hyperspectral image
restoration using low-rank tensor recovery,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 10, no. 10, pp. 4589–4604, Oct. 2017.



YUAN et al.: HSI DENOISING EMPLOYING A SPATIAL–SPECTRAL DEEP RESIDUAL CNN 1217

[23] Y. Qian and M. Ye, “Hyperspectral imagery restoration using nonlocal
spectral-spatial structured sparse representation with noise estimation,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2,
pp. 499–515, Apr. 2013.

[24] M. Ye, Y. Qian, and J. Zhou, “Multitask sparse nonnegative matrix
factorization for joint spectral–spatial hyperspectral imagery denoising,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2621–2639,
May 2015.

[25] Y. Yuan, X. Zheng, and X. Lu, “Spectral–spatial kernel regularized
for hyperspectral image denoising,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 7, pp. 3815–3832, Jul. 2015.

[26] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[27] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm
minimization with application to image denoising,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 2862–2869.

[28] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in Proc. IEEE Int. Conf. Comput. Vis.,
Nov. 2011, pp. 479–486.

[29] Q. Yuan, L. Zhang, and H. Shen, “Hyperspectral image denoising with
a spatial–spectral view fusion strategy,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 5, pp. 2314–2325, May 2014.

[30] Y. Chen, X. Cao, Q. Zhao, D. Meng, and Z. Xu, “Denoising hyperspec-
tral image with non-i.i.d. noise structure,” IEEE Trans. Cybern., vol. 48,
no. 3, pp. 1054–1066, Mar. 2018.

[31] W. Xie and Y. Li, “Hyperspectral imagery denoising by deep learning
with trainable nonlinearity function,” IEEE Geosci. Remote Sens. Lett.,
vol. 14, no. 11, pp. 1963–1967, Nov. 2017.

[32] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[33] Y. LeCun et al., “Handwritten digit recognition with a back-
propagation network,” in Proc. Adv. Neural Inf. Process. Syst., 1990,
pp. 396–404.

[34] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data:
A technical tutorial on the state of the art,” IEEE Geosci. Remote Sens.
Mag., vol. 4, no. 2, pp. 22–40, Jun. 2016.

[35] X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5,
no. 4, pp. 8–36, Dec. 2017.

[36] G.-S. Xia et al., “AID: A benchmark data set for performance evaluation
of aerial scene classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 7, pp. 3965–3981, Jul. 2017.

[37] L. Yan, R. Zhu, Y. Liu, and N. Mo, “Scene capture and selected
codebook-based refined fuzzy classification of large high-resolution
images,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 7,
pp. 4178–4192, Jul. 2018.

[38] X. Lu, B. Wang, X. Zheng, and X. Li, “Exploring models and data for
remote sensing image caption generation,” IEEE Trans. Geosci. Remote
Sens., vol. 56, no. 4, pp. 2183–2195, Apr. 2018.

[39] Z. Zhang, H. Wang, F. Xu, and Y.-Q. Jin, “Complex-valued convolu-
tional neural network and its application in polarimetric SAR image
classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 12,
pp. 7177–7188, Dec. 2017.

[40] Y. Wei, Q. Yuan, H. Shen, and L. Zhang, “Boosting the accuracy of
multispectral image pansharpening by learning a deep residual network,”
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1795–1799,
Oct. 2017.

[41] X.-J. Mao, C. Shen, and Y.-B. Yang, “Image restoration using convolu-
tional auto-encoders with symmetric skip connections,” in Proc. NIPS,
2016, pp. 1–17.

[42] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denois-
ing,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155,
Jul. 2017.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[44] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convo-
lutional neural network for inverse problems in imaging,” IEEE Trans.
Image Process., vol. 26, no. 9, pp. 4509–4522, Sep. 2017.

[45] Q. Zhang, Q. Yuan, C. Zeng, X. Li, and Y. Wei, “Missing data
reconstruction in remote sensing image with a unified spatial–tempo-
ral–spectral deep convolutional neural network,” IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 8, pp. 4274–4288, Aug. 2018.

[46] Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A multiscale and
multidepth convolutional neural network for remote sensing imagery
pan-sharpening,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 11, no. 3, pp. 978–989, Mar. 2018.

[47] J. Li, Q. Yuan, H. Shen, and L. Zhang, “Hyperspectral image recovery
employing a multidimensional nonlocal total variation model,” Signal
Process., vol. 111, pp. 230–248, Jun. 2015.

[48] D. P. Kingma and J. Ba. (2014). “Adam: A method for stochastic
optimization.” [Online]. Available: https://arxiv.org/abs/1412.6980

[49] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. ACM Int. Conf. Multimedia, 2014, pp. 675–678.

[50] Q. Wang, L. Zhang, Q. Tong, and F. Zhang, “Hyperspectral imagery
denoising based on oblique subspace projection,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2468–2480,
Jun. 2014.

[51] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote
sensing images with support vector machines,” IEEE Trans. Geosci.
Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[52] Y. Chen, Y. Guo, Y. Wang, D. Wang, C. Peng, and G. He, “Denoising of
hyperspectral images using nonconvex low rank matrix approximation,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9, pp. 5366–5380,
Sep. 2017.

[53] C. Chen, W. Li, E. W. Tramel, M. Cui, S. Prasad, and J. E. Fowler,
“Spectral–spatial preprocessing using multihypothesis prediction for
noise-robust hyperspectral image classification,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1047–1059,
Apr. 2014.

[54] H. Shen et al., “Missing information reconstruction of remote sensing
data: A technical review,” IEEE Geosci. Remote Sens. Mag., vol. 3,
no. 3, pp. 61–85, Sep. 2015.

Qiangqiang Yuan (M’13) received the B.S.
degree in surveying and mapping engineering and
the Ph.D. degree in photogrammetry and remote
sensing from Wuhan University, Wuhan, China,
in 2006 and 2012, respectively.

In 2012, he joined the School of Geodesy
and Geomatics, Wuhan University, where he is
currently an Associate Professor. He authored over
50 research papers, including over 30 peer-reviewed
articles in international journals such as the IEEE
TRANSACTIONS IMAGE PROCESSING and the

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. His
research interests include image reconstruction, remote sensing image
processing and application, and data fusion.

Dr. Yuan was a recipient of the Top-Ten Academic Star of Wuhan
University in 2011. He received the Hong Kong Scholar Award from the
Society of Hong Kong Scholars and the China National Postdoctoral Council
in 2014. He has frequently served as a Referee for over 20 international
journals for remote sensing and image processing.

Qiang Zhang (S’17) received the B.S. degree in
surveying and mapping engineering from Wuhan
University, Wuhan, China, in 2017. He is cur-
rently pursuing the M.S. degree with the School of
Geodesy and Geomatics, Wuhan University, Wuhan.

His research interests include image quality
improvement, data fusion, remote sensing image
processing, deep learning, and computer vision.



1218 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 2, FEBRUARY 2019

Jie Li (M’16) received the B.S. degree in sciences
and techniques of remote sensing and the Ph.D.
degree in photogrammetry and remote sensing from
Wuhan University, Wuhan, China, in 2011 and 2016,
respectively.

He is currently a Lecturer with the School of
Geodesy and Geomatics, Wuhan University. His
research interests include image quality improve-
ment, image super-resolution reconstruction, data
fusion, remote sensing image processing, sparse
representation, and deep learning.

Huanfeng Shen (M’10–SM’13) received the B.S.
degree in surveying and mapping engineering and
the Ph.D. degree in photogrammetry and remote
sensing from Wuhan University, Wuhan, China,
in 2002 and 2007, respectively.

In 2007, he joined the School of Resource and
Environmental Sciences, Wuhan University, where
he is currently a Luojia Distinguished Professor.
He has been supported by several talent programs,
such as the Youth Talent Support Program of China
in 2015, the China National Science Fund for Excel-

lent Young Scholars in 2014, and the New Century Excellent Talents by the
Ministry of Education of China in 2011. He has authored over 100 research
papers. His research interests include image quality improvement, remote
sensing mapping and application, data fusion and assimilation, and regional
and global environmental changes.

Dr. Shen is currently a member of the Editorial Board of the Journal of
Applied Remote Sensing.

Liangpei Zhang (M’06–SM’08) received the B.S.
degree in physics from Hunan Normal University,
Changsha, China, in 1982, the M.S. degree in optics
from the Xi’an Institute of Optics and Precision
Mechanics, Chinese Academy of Sciences, Xi’an,
China, in 1988, and the Ph.D. degree in photogram-
metry and remote sensing from Wuhan University,
Wuhan, China, in 1998.

He is currently the Head of the Remote Sensing
Division with the State Key Laboratory of Infor-
mation Engineering in Surveying, Mapping, and

Remote Sensing, Wuhan University. He is also a “Chang-Jiang Scholar”
Chair Professor appointed by the Ministry of Education of China. He is
currently a Principal Scientist for the China State Key Basic Research Project
from 2011 to 2016 appointed by the Ministry of the National Science and
Technology of China to lead the remote sensing program in China. He has
authored over 500 research papers and five books and holds 15 patents.
His research interests include hyperspectral remote sensing, high-resolution
remote sensing, image processing, and artificial intelligence.

Dr. Zhang is a fellow of the Institution of Engineering and Technology,
an Executive Member (Board of Governor) of the China National Committee
of International Geosphere–Biosphere Program, and an Executive Member
of the China Society of Image and Graphics. He is the Founding Chair of
the IEEE Geoscience and Remote Sensing Society (GRSS) Wuhan Chapter.
He was a recipient of the 2010 Best Paper Boeing Award and the 2013 Best
Paper ERDAS Award from the American Society of Photogrammetry and
Remote Sensing. He received the best reviewer awards from IEEE GRSS
for his service to the IEEE JOURNAL OF SELECTED TOPICS IN EARTH
OBSERVATIONS AND APPLIED REMOTE SENSING (JSTARS) in 2012 and
the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS in 2014. He was
the General Chair for the 4th IEEE GRSS Workshop on Hyperspectral
Image and Signal Processing: Evolution in Remote Sensing and the Guest
Editor of JSTARS. His research teams won the top three prizes of the IEEE
GRSS 2014 Data Fusion Contest, and his students have been selected as
the Winners or Finalists of the IEEE International Geoscience and Remote
Sensing Symposium student paper contest in recent years. He regularly
serves as a Co-Chair of the series SPIE conferences on multispectral image
processing and pattern recognition, conference on Asia remote sensing, and
many other conferences. He edits several conference proceedings, issues, and
geoinformatics symposiums. He also serves as an Associate Editor for the
International Journal of Ambient Computing and Intelligence, the Interna-
tional Journal of Image and Graphics, the International Journal of Digital
Multimedia Broadcasting, the Journal of Geo-spatial Information Science,
and the Journal of Remote Sensing, and the Guest Editor for the Journal of
Applied Remote Sensing and the Journal of Sensors. He is currently serving
as an Associate Editor for the IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING.


