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Robust Thick Cloud Removal for Multi-Temporal
Remote Sensing Images Using Coupled Tensor

Factorization
Jie Lin, Ting-Zhu Huang, Xi-Le Zhao, Yong Chen, Qiang Zhang, and Qiangqiang Yuan

Abstract—The existing non-blind cloud and cloud shadow
(cloud/shadow) removal methods for remote sensing (RS) images
are based on the assumption that cloud/shadow masks are
accurately given. Since the masks are usually manually labeled
or detected by cloud detection methods, whose accuracy cannot
be well guaranteed, the cloud/shadow removal effect may be
affected. In this paper, we suggest a robust thick cloud/shadow re-
moval (RTCR) method that meets the problem with an inaccurate
mask. To faithfully reconstruct the multi-temporal information,
a coupled tensor factorization is used to explore the relationship
between the abundances of the multi-temporal images in the same
scene. Moreover, an efficient algorithm is developed to solve the
proposed model based on the augmented Lagrange multiplier
method. The experimental results under accurate masks and
inaccurate masks demonstrate its robustness and superiority for
thick cloud/shadow removal.

Index Terms—Robust cloud/shadow removal, coupled tensor
factorization, multi-temporal remote sensing image, augmented
Lagrange multiplier.

I. INTRODUCTION

W ITH the development of remote sensing (RS) tech-
nology, lots of temporal images with the high spatial

and spectral resolution are captured by satellites. This greatly
promotes the applications of RS images in environmental
monitoring, urban planning, surface classification, etc [1–5].
However, RS images are inevitably contaminated by thick
cloud/shadow and the authentic reflectivity information is
lost, which severely limits its regular exploitation, such as
unmixing, target detection, and classification [6, 7]. Therefore,
designing a thick cloud/shadow removal method to reconstruct
the cloud-contaminated region is an essential preprocessing
task.
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Fig. 1. Comparison of reconstructed results of three kinds of cloud removal
methods. (a) Non-blind method [8]; (b) Blind method [9]; (c) The proposed
RTCR method.

A. Related Works

In the past decades, plenty of methods have been proposed
to address the issue of thick cloud/shadow removal. According
to whether the cloud/shadow mask is required, these methods
can be divided into two categories: non-blind methods and
blind methods.

1) Non-blind methods: The non-blind methods need the
given cloud/shadow mask to identify corrupted regions and
then use cloud/shadow-free regions to reconstruct the underly-
ing information. With the given mask, the thick cloud/shadow
removal task can be transformed into the inpainting or com-
pletion task [10–12]. The most classic methods to tackle
this issue are spatial-based methods, including interpolation-
based methods [13–15], variation-based methods [16–18], and
exemplar-based methods [19, 20]. These methods only use the
relationship among the local or nonlocal regions in the spatial
dimension and perform well in rebuilding small cloud/shadow-
contaminated regions [21]. To utilize the high correlations
among the spectral bands, spectral-based methods for missing
information reconstruction were proposed. Shen et al. [22],
Wang et al. [23], Rakwatin et al. [24], and Li et al. [25]
reconstructed the missing region of Aqua Moderate-resolution
Imaging Spectroradiometer band 6 based on the spectral
relation with other bands. However, in the real scenario,
all spectral bands of RS images are usually contaminated
by large-scale thick clouds, which means that only using
spatial or spectral information is not enough to reconstruct
underlying information [26, 27]. Since the satellites revisit
the same region with a regular revisiting cycle and the
cloud/shadow-contaminated region of the acquired RS images
cannot overlap all the time, the cloud/shadow-free region in
the multi-temporal reference images is powerful complemen-
tary information to reconstruct cloud/shadow-contaminated the
region [28, 29]. To fully exploit all available information,
Benabdelkader et al. [30] and Melgani [31] reconstructed the
contextual information of cloud-contaminated regions in multi-
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Fig. 2. Flowchart of the proposed robust thick cloud/shadow removal (RTCR) for multi-temporal RS images. (The red color regions in target images denote
the undetected clouds.)

temporal images by employing spatial, spectral, and temporal
relations. Based on the temporal correlation of multi-temporal
images, Cheng et al. [32] built a pixel-offset based spatio-
temporal Markov random fields global function to locate sim-
ilar pixels and the missing pixel is filled using the known sim-
ilar pixels; Wang et al. [8] proposed a temporally contiguous
robust matrix completion model and developed an augmented
Lagrangian method with inexact proximal gradient (ALM-
IPG) to solve the model; Lin et al. [33] presented a patch-
based information reconstruction algorithm; Shuai et al. [34]
presented a spectral angle distance weighted reconstruction
method to reconstruct the MODIS land surface temperature
product. Using multi-temporal images as reference images,
Zeng et al. [35] proposed a weighted linear regression (WLR)
model to fill the missing pixels. To jointly exploit the spatial,
spectral, and temporal information, Ng et al. [36] proposed
an adaptive weighted tensor completion method to recover
the missing data; Ji et al. [37] suggested a nonlocal low-rank
tensor completion method, which makes full use of the corre-
lations of all the three domains. The temporal-based methods
show a more effective performance for large and thick cloud
removal. Recently, deep learning (DL) has achieved great suc-
cess in the field of remote sensing image processing and DL-
based methods for cloud removal have been proposed. Zhang
et al. [38] proposed a unified spatial-temporal-spectral frame-
work based on a deep convolutional neural network (CNN)
that employs a unified deep CNN combined with spatial-
temporal-spectral supplementary information. Later, Zhang et
al. [39] proposed a framework that combines the global-local
spatio-temporal information in remote sensing imagery with
the non-linear learning capability of deep neural network. All
the above methods exhibit high effectiveness for cloud/shadow
removal. However, these methods rely heavily on the mask.
When the given cloud mask is not accurate, it is difficult to
obtain the ideal cloud/shadow removal result.

2) Blind methods: The blind methods remove the
cloud/shadow without the given cloud/shadow mask. To over-
come the dependence on the mask, many blind methods with
promising performance have been proposed. Without the given
mask, Tseng et al. [40] proposed an automatic multi-temporal
method, which contains multi-spectral image enhancement,
cloud/shadow determination, and image mosaicking, to gen-
erate cloud-free mosaic images from multi-temporal SPOT
images; Lin et al. [41] used the temporal correlation of multi-
temporal images and suggested a method that clones infor-

mation from cloud-free patches to the corresponding detected
cloud-contaminated patches; Meraner et al. [42] designed a
deep residual neural network architecture for the cloud re-
moval of multi-spectral Sentinel-2 imagery and utilized SAR-
optical data fusion to exploit the synergistic properties of the
two imaging systems to guide the image reconstruction. Li et
al. [43] proposed a nonnegative matrix factorization and error
correction method, which does not require cloud detection and
the cloud-free information of the cloud-contaminated image
can be maximally retained. Recently, Chen et al. [9] proposed
a blind method named spatial-spectral total-variation regular-
ized low-rank sparsity decomposition (TVLRSD) framework,
which embodies an efficient threshold method to detect cloud.
The method gets rid of the dependence on the mask and shows
superior performance for the cloud removal of multi-temporal
RS images. However, the threshold in the threshold method
needs to be set manually and the effect of cloud removal is
very sensitive to the threshold. An inappropriate threshold can
lead to incomplete cloud removal or spectral distortion.

B. Motivation
First, the calibrated RS imagery products usually come with

manually labeled cloud/shadow masks, while sometimes the
given masks are inaccurate. Non-blind methods reconstruct
the underlying information completely according to the given
mask, which cannot reconstruct all information when the given
mask with missed detection of clouds, as shown in Fig. 1
(a); the blind method reconstructs the underlying information
without the mask, which will lead to color distortion since
there is no true information as guidance, as shown in Fig. 1
(b). Thus, how to make a balance between the non-blind
methods and the blind method to achieve the reasonable use
of the masks that comes with RS imagery products?

To tackle this issue, we introduce a sparse term into our
method to characterize the cloud/shadow component and de-
velop an adaptive threshold algorithm to refine the given inac-
curate mask. The method can achieve a robust cloud/shadow
removal with an inaccurate mask.

Second, the exiting temporal-based methods usually use the
direct relationship between original multi-temporal images. Is
there any latent relationships between the multi-temporal
RS images, which can be exploited to finely reconstruct the
multi-temporal information?

As the distribution of surface material is constant over a
short period and the same material shows different spectral
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Fig. 3. Redundancy between abundance tensors Ai ∈ Rm×n×r(i = 1, 2, 3).
(R{Ai} ∈ Rmn×3r is the matrixing of all Ais.)

signatures at different time nodes, we observe that the multi-
temporal images in the same scene share the same abundances
over a short period. This observation motivates us to find that
there is redundancy between the abundances of multi-temporal
images, which can be described by rank. Inspired by subspace
representation [44], we use a coupled tensor factorization to
decompose the RS image at each time node into orthogonal
basis and coefficient, which are more compact spectral sig-
nature set and corresponding abundances from the unmixing
perspective [45, 46]. Fig. 3 shows the relationship between
abundance tensors, i.e., the reshaped matrix of abundance
tensors is low-rank.

C. Contribution

Based on the above-mentioned strategy and observation,
a Robust Thick Cloud/shadow Removal (RTCR) method
using coupled tensor factorization is suggested to address the
cloud/shadow removal with an inaccurate mask (see Fig. 2 for
the flowchart). The contributions are three-fold:

• We suggest a robust thick cloud/shadow removal method.
Compared with non-blind methods, a sparse term is
introduced to characterize the cloud/shadow component
and an adaptive threshold algorithm is designed to refine
the given mask, which makes the method robust to the
given inaccurate mask.

• We propose a multi-temporal information reconstruction
model. The model uses a coupled tensor factorization to
explore a deeper relationship that the redundancy between
the abundances of multi-temporal images. This provides
a new perspective for cloud/shadow removal.

• We develop an efficient augmented Lagrange multiplier
(ALM) method-based algorithm for solving the proposed
model. The simulated and real experiments on three
datasets acquired by the Sentinel-2 and Landsat-8 are
implemented, which demonstrates its superiority and
robustness and for thick cloud/shadow removal under
accurate masks and inaccurate masks.

D. Organization

The remainder of this paper is organized as follows: Section
II gives the proposed RTCR method. Section III reports the
experimental results. Section IV concludes this paper.

II. THE PROPOSED METHOD

A. Preliminary

In this paper, we denote tensor by capitalized calligraphic
letters, e.g., A; matrices are represented as capitalized letters,
e.g., A; scalars are expressed with lowercase letters, e.g., x.
An mth-order tensor is represented as A ∈ Rn1×n2×···nm and
its elements are denoted as ai1,i2,··· ,im . The unfolding matrix
A(k) = unfoldk(A) ∈ Rnk×

∏
i6=k ni is composed by taking the

k-mode vectors of A as its columns. Conversely, the unfolding
matrices along the k-mode can be transformed back to the
tensor byA = foldk(A(k)) ∈ Rn1×n2×···nm . The nuclear norm
of matirx A is defined as ‖A‖∗ =

∑
i σi(A), where σi(A) is

the ith singular value of A. The l1-norm and Frobenius norm
of tensor A are defined as ‖A‖1 =

∑
i1,i2,··· ,im |ai1,i2,··· ,im |

and ‖A‖F = (
∑
i1,i2,··· ,im |ai1,i2,··· ,im |

2)1/2, respectively. For
{Aj}n4

j=1 where Aj ∈ Rn1×n2×n3 , operators R and C are
defined as A = R{Aj} ∈ Rn1n2×n3n4 and A = C {Aj} ∈
Rn1×n2×n3n4 , respectively.

Definition (i-mode product [47]) For a tensor A ∈
Rn1×n2×···nm and a matrix F ∈ Rk×ni , the i-mode
product of them is denoted as X = A ×i F ∈
Rn1×···×ni−1×k×ni+1×···×nm and

xn1,··· ,ni−1,k,ni+1,··· ,nm
=

ni∑
ji=1

ai1,i2,··· ,iN fk,ji .

B. Problem Formulation

Refine Mask

+=

+=

Degradation model with the inaccurate mask

Degradation model with the refined mask

Fig. 4. Illustration of the degradation model with different masks.

For the thick cloud/shadow contaminated observations with
t time nodes Y ∈ Rm×n×bt (m and n are spatial resolutions,
and b is the number of spectral bands), the degradation model
can be expressed as

Y =M�X + C,

where � denotes the point-wise product, M ∈ Rm×n×bt is
a binary tensor with the zeros representing missing pixels,
X ∈ Rm×n×bt is the cloud-free images, and C ∈ Rm×n×bt
is cloud/shadow component. Fig. 4 illustrates the degradation
model with the inaccurate mask and the refined mask.
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C. Mask Refinement

To refine the given cloud/shadow mask M0, we use a
threshold algorithm (Algorithm 1) to detect the undetected
cloud/shadow from the error component E = Y − X .

Algorithm 1 Adaptive Threshold Algorithm for Mask Refine-
ment
Input: Error component E , given maskM0, and correspond-

ing cloud/shadow index set Ω0.
1: Initialize: Ω = Ω0, M =M0.
2: for i = 1 : t do
3: for p1 = 1 : m do
4: for p2 = 1 : n do
5: Compute a = mean [E(p1, p2, (i-1)b+1:ib)];
6: Compute

τ =min{|mean[(E)Ω0(p1, p2, (i-1)b+1:ib)]|};
7: Ω = Ω ∪ (p1, p2, (i-1)b+1:ib), if |a| > τ ;
8: end for
9: end for

10: end for
11: Let (M)Ω = 0;
Output: Refined mask M.

Under the guidance of the given mask, the threshold value τ
in the proposed algorithm can be automatically set according
to the pixel values of the error component E corresponding
to the given cloud/shadow region. The strategy may result in
the over-detection of the cloud/shadow but the over-detected
region can be faithfully reconstructed (see Section III-D1).
Moreover, we embed the threshold algorithm in each iteration
of Algorithm 2, which will help introduce true complementary
information for subsequent information compensation, which
circumvent the problem of the blind method.

D. Information Reconstruction

For the ith time node RS image Xi ∈ Rm×n×b, we
decompose it as

Xi = Ai ×3 Fi,

where Ai ∈ Rm×n×r is abundance tensor, Fi ∈ Rb×r is semi-
orthogonal basis and contains r spectral signatures, and ×3 is
3-mode product. There are two necessities for the orthogo-
nality of basis. First, it allows us to use fewer distinguished
spectral signatures to represent the image, leading to less
computational complexity. Second, it guarantees the closed-
from solution for updating Fi [48].

Based on our observation and the sparse prior of the
cloud/shadow [9], the low-rankness and the sparsity of the
rearrangement of abundance tensors A = R{Ai} ∈ Rmn×rt
and the cloud/shadow component C can be characterized by
rank function and l0-norm, respectively. For observed multi-
temporal images Y ∈ Rm×n×bt, the information reconstruc-
tion model is formulated as

min
X ,C,Ai,Fi

1

2
‖Y −M�X − C‖2F + β‖C‖0 + αRank(A),

s.t. Xi = Ai ×3 Fi, FTi Fi = I.
(1)

where i denotes the ith time node, X ∈ Rm×n×bt is cloud-
free image, Y ∈ Rm×n×bt is target image, and A ∈ Rmn×rt is
the rearrangement of all Ais, which is obtained by vectorizing
each band of all Ais into a column and then rearranging them
into a matrix. α and β are regularization parameters.

For a tractable optimization, we substitute the rank function
and l0-norm with nuclear norm and l1-norm, respectively.
Thus, we formulated (1) as

min
X ,C,Ai,Fi

1

2
‖Y −M�X − C‖2F + β‖C‖1 + α‖A‖∗,

s.t. Xi = Ai ×3 Fi, FTi Fi = I.
(2)

Note that for both the images with short intervals or long
intervals, the nuclear norm can flexibly capture the redundancy
of their abundances (see Section III-D2). By introducing
auxiliary variable W = A, the problem can be rewritten as

min
X ,C,Ai,Fi,W

1

2
‖Y −M�X − C‖2F + β‖C‖1 + α‖W‖∗,

s.t. W = A,Xi = Ai ×3 Fi, FTi Fi = I.
(3)

Based on the ALM method, we deduce the following aug-
mented Lagrangian function for problem (2):

L(Fi,Ai,W, C,X ;Pi,Q) =
1

2
‖Y −M�X − C‖2F + β‖C‖1

+
t∑
i=1

{
〈Pi,Xi −Ai ×3 Fi〉+

ρ

2
‖Xi −Ai ×3 Fi‖2F

}
+ α‖W‖∗ + 〈Q,W− A〉+

γ

2
‖W− A‖2F .

(4)
where Pi and Q are Lagrange multipliers. Then, each variable
can be updated as follows:

1) Update {Fi}. Each Fi-subproblem is as follows:

Fk+1
i = arg min

FT
i Fi=I

∥∥(X ki + Pki /ρ
)
−Aki ×3 Fi

∥∥2

F
.

This problem can be solved in closed-form solution [48]

Fk+1
i = VUT , (5)

where USVT = (Aki )(3)

(
Xki + Pki /ρ

)T
(3)

is the singular value
decomposition (SVD).

2) Update {Ai}. The {Ai}-subproblem is as follows:

{Ak+1
i } = arg min

{Ai}

γ

2

∥∥∥(Wk + Qk/γ
)
− A

∥∥∥2

F

+
t∑
i=1

ρ

2

∥∥(X ki + Pki /ρ
)
−Ai ×3 Fk+1

i

∥∥2

F
.

To solve this problem, we introduce the following Theorem.
Theorem 1: If F is a semi-orthogonal matrix, i.e., FTF = I,

where I is the identity matrix, then

arg min
A
‖X −A×3 F‖2F = arg min

A
‖X ×3 FT −A‖2F .

The proof of the theorem will be provided in Appendix A.
According to Theorem 1, we have

{Ak+1
i } = arg min

{Ai}

t∑
i=1

{
γ

2

∥∥∥R−1
i

(
Wk + Qk/γ

)
−R−1

i A
∥∥∥2

F

+
ρ

2

∥∥(X ki + Pki /ρ
)
×3 (Fk+1

i )T −Ai
∥∥2

F

}
.
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Then, we get each Ai-subproblem,

Ak+1
i = arg min

Ai

γ

2

∥∥∥R−1
i

(
Wk + Qk/γ

)
−Ai

∥∥∥2

F

+
ρ

2

∥∥(X ki + Pki /ρ
)
×3 (Fk+1

i )T −Ai
∥∥2

F
.

Taking the derivative with respect to Ai, we have the exact
solution of Ai:

Ak+1
i =

(ρX ki + Pki )×3 (Fk+1
i )T + R−1

i (γWk + Qk)

ρ+ γ
. (6)

3) Update W. The W-subproblem is as follows:

Wk+1 = arg min
W

α‖W‖∗ +
γ

2

∥∥∥(Ak+1 −Qk/γ
)
−W

∥∥∥2

F
.

This problem can be solved by singular value thresholding
[49] and its closed-form solution:

Wk+1 = UDiag{(Σ− α/γ)+}VT , (7)

where UΣVT is from the SVD of UΣVT = Ak+1 − Qk/γ
and (Σjj − α/γ)+ = max{Σjj − α/γ, 0}.

4) Update C. The C-subproblem is as follows:

Ck+1 = arg min
Ci

1

2
‖(Y −M�X k)− C‖2F + β‖C‖1.

The solution to this problem is given by

Ck+1 = softβ(Y −M�X k), (8)

where softβ(A) = sgn(aijk)max(|aijk| − β, 0).
5) Update {X}. X -subproblem is as follows:

X k+1 = arg min
X

1

2

∥∥(Y − Ck+1)−M�X
∥∥2

F

+

t∑
i=1

ρ

2

∥∥(Ak+1
i ×3 Fk+1

i − Pki /ρ
)
−Xi

∥∥2

F
.

(9)

Let X = C {Xi} ∈ Rm×n×bt, (9) can be rewritten as

X k+1 = arg min
X

1

2

∥∥(Y − Ck+1)−M�X
∥∥2

F

+
ρ

2

∥∥C {Ak+1
i ×3 Fk+1

i − Pki /ρ
}
−X

∥∥2

F
.

(10)

The closed-form solution of X is

X k+1 =
[
M�

(
Y − Ck+1

)
+ C

{
ρAk+1

i ×3 Fk+1
i − Pki

}]
� (M+ ρJ ),

(11)
where � denotes the point-wise division and J is all-ones
tensor.

6) Update {Pi} and Q. Each Pi and Q are updated as{
Pk+1
i = Pki + ρ(X k+1

i −Ak+1
i ×3 Fk+1

i ),

Qk+1 = Qk + γ(Wk+1 − Ak+1).
(12)

Finally, the developed algorithm for solving the proposed
model is summarized in Algorithm 2. In the algorithm, we
initialize F0

i = U(:, 1 : r), where U is from the SVD of
USVT =

(
Xki + Pki /ρ

)
(3)

and r is estimated by HySime [50].

Algorithm 2 ALM Algorithm for Cloud/Shadow Removal
Input: Target RS images Y , regularization parameters α and

β, and penalty parameters γ and ρ.
1: Initialize: X = Y , C = Pi = O, and W = Q = 0.
2: while not converged do
3: Update {Fk+1

i } by (5);
4: Update {Ak+1

i } by (6);
5: Update Wk+1 by (7);
6: Update Ck+1 by (8);
7: Update X k+1 by (11);
8: Update {Pk+1

i } and Qk+1 by (12);
9: Refine mask M by Algorithm 1;

10: Check the convergence condition:
‖X k+1 −X k‖2F /‖X k‖2F ≤ 10−4.

11: end while
Output: Reconstructed RS images X .

III. EXPERIMENTS AND RESULTS

To demonstrate the effectiveness of the proposed method
for thick cloud/shadow removal, we select 4 state-of-the-art
methods as comparison methods, including non-blind comple-
tion method HaLRTC [51], non-blind cloud removal methods
ALM-IPG [8] and WLR [35], and blind cloud removal method
TVLRSDC [9]. We set the parameters of the comparison
methods according to the source code settings or the authors’
suggestions. The parameter setting of the proposed RTCR is
reported in Section III-D6. We use J − M for the visual
display of the cloud mask in this Section.

A. Simulated Experiment

Since it is difficult to quantitively assess the cloud/shadow
removal results in real experiments, we perform simulated
experiments to quantitively and qualitatively verify the ef-
fectiveness of the proposed RTCR. The detailed information
about the test datasets and the evaluation indexes are as
follows:

01/19/2021 01/16/2021 01/14/2021 02/10/2021 02/08/2021 01/29/2021

03/24/2021 03/01/2021 02/24/2021 03/31/2021 03/06/2021 02/27/2021

06/13/2019 05/21/2020 04/03/2020 06/26/2018 06/29/2019 04/02/2020
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Fig. 5. Pseudo-color images (R: B4, G: B3, B: B2) of three simulated datasets.
(“MM/DD/YYYY” means the date of taking the image.)

Datasets: To test the robustness of RTCR on different type
datasets, two Sentinel-2 L2A/B datasets, and a Landsat-8 OLI
dataset are selected in simulated experiments. The pseudo-
color images of the referred datasets are shown in Fig. 5.
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• Dongying1. This dataset is taken over Dongying, China,
by Sentinel-2, and each time node contains 4 spectral
bands (B2, B3, B4, and B8) with 10m spatial resolution.
The sub-images of size 500 × 500 × 4 of 6 time nodes
are used in experiments.

• Picardie1. This dataset is taken over Picardie, France,
by Sentinel-2, and each time node contains 6 spectral
bands (B5, B6, B7, B8A, B11, and B12) with 20m spatial
resolution. The sub-images of size 1000× 1000× 6 of 6
time nodes are used in experiments.

• Bourgogne2. This dataset is taken over Bourgogne,
France, by Landsat-8, and each time node contains 7
spectral bands (B1, B2, B3, B4, B5, B6, and B7) with
30m spatial resolution. The sub-images of size 400 ×
400× 7 of 6 time nodes are used in experiments.

Evaluation indexes: We select three picture quality indexes
to measure the results quantitatively, including the peak signal-
to-noise ratio (PSNR), the structural similarity (SSIM) [52],
and the correlation coefficient (CC) [53], which are defined as
follows:

PSNRi = 10× log
pq

‖Xi − X̂i‖2F
,

SSIMi =
(2µXi

µX̂i
+ c1)(2σXiX̂i

)

(µ2
Xi

+ µ2
X̂i

+ c1)(σ2
Xi

+ σ2
X̂i

+ c2)
,

CC =

∑k
j=1(Xj − µX )(X̂j − µX̂ )√∑k

j=1(Xj − µX )2
∑k
j=1(X̂j − µX̂ )2

where p and q denote the size of each band, Xi and X̂i denote
the ith band of original image and reconstructed image; µXi

and µX̂i
denote the average values of Xi and X̂i, σ2

Xi
and σ2

X̂i

stand for the variances, and σXiX̂i
is the covariance between

Xi and X̂i, c1 and c2 are default constants; Xj and X̂j are the
original and the reconstructed values of the jth contaminated
pixels, respectively, k denotes the number of contaminated
pixels, µX and µX̂ are the average values.

To verify the robustness of RTCR to the given masks
with different accuracy, the experimental procedure adopted
is 1) to give the accurate mask and assess the information
reconstruction performance and 2) to provide the inaccurate
mask (with undetected clouds) and evaluate both the mask
refinement and information reconstruction performance.

1) Accurate mask: In the three datasets, we select three
temporal images to add simulated cloud/shadow as cloud-
contaminated images and employ the rest three as the reference
images (see Table I and Fig. 5 for details).

For the three simulated data in each dataset, we add different
simulated cloud/shadow to them, which corresponds to Case
1 to 3. For the Dongying dataset and Bourgogne dataset,
we mainly test the effectiveness of the proposed RTCR for
the multiple small, middle, and large clouds removal; For
the Picardie dataset, we mainly test the effectiveness of the
proposed RTCR for the large cloud/shadow and huge cloud
removal. The detailed setting to the three datasets in simulated
experiments is presented in Table I.

1https://earthexplorer.usgs.gov
2https://theia.cnes.fr/atdistrib/rocket/#/home

TABLE I
SELECTION OF SIMULATED DATA AND SETTING OF SIMULATION CLOUD

IN DIFFERENT CASES OF THREE DATASETS.

Dataset Case Simulated data Cloud/Shadow region
Small Middle Large Huge

Dongying
Case 1 01/19/2021 2 – 1 –
Case 2 01/16/2021 – 1 – –
Case 3 01/14/2021 1 2 – –

Picardie
Case 1 03/24/2021 2 – 1 –
Case 2 03/01/2021 – – 1 –
Case 3 02/24/2021 – – – 1

Bourgogne
Case 1 06/13/2019 2 – 1 –
Case 2 05/21/2020 – 1 – –
Case 3 04/03/2020 1 2 – –

TABLE II
QUANTITATIVE EVALUATION OF CLOUD/SHADOW REMOVAL RESULTS BY

ALL METHODS ON THREE DATASETS.

Dongying
Case Index Target HaLRTC ALM-IPG WLR TVLRSDC RTCR

Case 1
PSNR 12.802 36.913 41.761 39.097 43.131 46.536
SSIM 0.8686 0.9702 0.9931 0.9837 0.9927 0.9963

CC 0.3315 0.9776 0.9962 0.9842 0.9953 0.9974

Case 2
PSNR 15.138 38.761 39.226 38.710 42.237 45.788
SSIM 0.9334 0.9856 0.9934 0.9829 0.9935 0.9964

CC 0.1198 0.9741 0.9876 0.9821 0.9920 0.9975

Case 3
PSNR 14.579 40.754 31.726 37.197 38.221 45.656
SSIM 0.8937 0.9861 0.9738 0.9818 0.9926 0.9963

CC 0.3445 0.9898 0.9426 0.9636 0.9865 0.9961
Time (min) — 3.104 6.876 4.962 8.210 3.763

Picardie
Case Index Target HaLRTC ALM-IPG WLR TVLRSDC RTCR

Case 1
PSNR 9.632 44.295 44.010 44.717 49.614 52.206
SSIM 0.8344 0.9873 0.9876 0.9888 0.9961 0.9978

CC 0.1270 0.9353 0.9214 0.9686 0.9773 0.9932

Case 2
PSNR 7.5131 40.850 45.286 47.261 49.530 50.515
SSIM 0.7632 0.9682 0.9896 0.9938 0.9959 0.9975

CC 0.1134 0.8736 0.9281 0.9745 0.9797 0.9873

Case 3
PSNR 4.166 39.032 38.630 44.514 45.513 47.048
SSIM 0.5188 0.9567 0.9620 0.9955 0.9904 0.9941

CC 0.1097 0.7238 0.6346 0.8057 0.9184 0.9258
Time (min) — 1.065 1.705 4.882 9.617 0.988

Bourgogne
Case Index Target HaLRTC ALM-IPG WLR TVLRSDC RTCR

Case 1
PSNR 11.081 36.357 33.056 32.757 35.675 39.117
SSIM 0.8378 0.9412 0.9345 0.9279 0.9522 0.9700

CC 0.2373 0.9488 0.9011 0.8295 0.9406 0.9743

Case 2
PSNR 14.108 36.185 35.996 30.001 36.223 38.414
SSIM 0.9194 0.9651 0.9744 0.9056 0.9706 0.9807

CC 0.4975 0.9785 0.9752 0.8653 0.9787 0.9869

Case 3
PSNR 11.807 35.950 36.765 37.202 38.091 40.596
SSIM 0.8543 0.9538 0.9713 0.9778 0.9742 0.9854

CC 0.3216 0.9598 0.9689 0.9786 0.9780 0.9877
Time (min) — 1.964 1.316 3.373 3.159 0.865

We present the quantitative comparison in Table II. The
highest PSNR, SSIM, and CC are highlighted in bold. Table II
shows that all comparison methods obtain satisfactory results
under different cases on three datasets. For multiple small con-
taminated regions, i.e., on Dongying and Bourgogne datasets,
the performance of HaLRTC is similar to that of ALM-IPG
and WLR. When it becomes large or even huge contaminated
regions, i.e., on Picardie dataset, the cloud removal methods
WLR, TVLRSDC, and RTCR have better cloud removal re-
sults than the completion method HaLRTC. Considering three
evaluation indexes comprehensively, cloud removal methods
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(a) Target (b) Cloud-free (c) HaLRTC (f) TVLRSDC(e) WLR(d) ALM-IPG (g) RTCR

Fig. 6. (a) Pseudo-color images (R:B8, G:B4, B:B3) of simulated target images in Cases 1-3 of Dongying dataset; (b) Cloud-free images; (c)-(g) Cloud
removal results by all methods.
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(a) Target (b) Cloud-free (c) HaLRTC (f) TVLRSDC(e) WLR(d) ALM-IPG (g) RTCR

Fig. 7. (a) Pseudo-color images (R:B11, G:B7, B:B5) of simulated target images in Cases 1-3 of Picardie dataset; (b) Cloud-free images; (c)-(g) Cloud
removal results by all methods.

obtain better results than the completion method HaLRTC,
especially for the removal of large region clouds. For the cloud
removal methods, RTCR achieves superior performance than
others. Regarding PSNR, the results of the proposed RTCR
achieve around 31-44dB improvement over the target images
on Dongying and Picardie datasets and exceed around 24-
29dB than the target images on the Bourgogne dataset. On
the whole, RTCR significantly outperforms all comparison
methods in terms of all evaluation indexes.

In terms of visual quality, the target images, cloud-free
images, and reconstructed results on three datasets under
different cases are shown in Figs. 6-8, respectively, where the
same area of the subfigures in each figure is enlarged for a

clear comparison. Fig. 6 displays the pseudo-color images of
the reconstructed results in Cases 1-3 of the Dongying dataset.
From Fig. 6, we observe that HaLRTC and ALM-IPG cannot
finely reconstruct the original texture details under the clouds.
From Fig. 6 (f), TVLRSDC fails to preserve some details in
Case 2. Overall, WLR and RTCR achieve a more satisfactory
cloud removal effect. Fig. 7 illustrates the pseudo-color images
of the reconstructed results in Cases 1-3 of the Picardie dataset.
From Fig. 7 (c)-(g), it can be observed that, for large and
huge cloud removal, all methods achieve outstanding cloud
removal effect and detail preservation except for HaLRTC
and ALM-IPG. Fig. 8 displays the pseudo-color images of the
reconstructed results in Cases 1-3 of the Bourgogne dataset.
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Fig. 8. (a) Pseudo-color images (R:B4, G:B3, B:B2) of simulated target images in Cases 1-3 of Bourgogne dataset; (b) Cloud-free images; (c)-(g) Cloud
removal results by all methods.

(a) HaLRTC (b) ALM-IPG (c) WLR (d) TVLRSDC (e) RTCR

Fig. 9. Scatter diagrams between the original and reconstructed pixels of the cloud-contaminated regions in Case 2 of Dongying dataset.

(a) HaLRTC (b) ALM-IPG (c) WLR (d) TVLRSDC (e) RTCR

Fig. 10. Scatter diagrams between the original and reconstructed pixels of the cloud-contaminated regions in Case 3 of Picardie dataset.

From Fig. 8 (c), HaLRTC fails to recover the details of the
original information. Although WLR seems to have more ideal
results on the whole, from the enlarged area, there are still have
distortions compared with the cloud-free images. From the
results of ALM-IPG and TVLRSDC, there is a color difference
between the reconstructed region and the cloud-free region.
Compared with all methods, the proposed RTCR achieves the
closest results to the cloud-free images.

To further measure the reconstruction quality of the cloud-
contaminated region, we display the scatter diagrams between
the original pixels and the reconstructed pixels by different
methods on three datasets. Fig. 9 shows the scatter diagrams
in Case 2 of the Dongying dataset. From Fig. 9 (c), there are
some points that deviate from the diagonal line. The points
of ALM-IPG, TVLRSDC, and RTCR are mostly distributed
surrounding the diagonal line. Fig. 10 shows the scatter
diagrams in Case 3 of the Picardie dataset. From Fig. 10 (b),

some points deviate from the blue diagonal, which illustrates
the color aberration in the reconstructed result of ALM-
IPG. Although all methods except HaLRTC and ALM-IPG
achieve satisfactory visual performance in Fig. 7, the points
of RTCR in Fig. 10, which are mostly distributed surrounding
the diagonal line, demonstrates the advantage of the proposed
RTCR. Fig. 11 shows the scatter diagrams in Case 1 of the
Bourgogne dataset. It is clear that the points of RTCR are
mostly distributed surrounding the diagonal line. From Figs.
9-11, RTCR achieves the best reconstruction performance for
the cloud-contaminated regions.

From the experiments with the accurate mask, we can
observe that RTCR shows a clear superiority on multi-temporal
information reconstruction. This demonstrates the advantage
of using coupled tensor decomposition to reproduce the multi-
temporal relationship of target images.
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(a) HaLRTC (b) ALM-IPG (c) WLR (d) TVLRSDC (e) RTCR

Fig. 11. Scatter diagrams between the original and reconstructed pixels of the cloud-contaminated regions in Case 1 of Bourgogne dataset.

(a) Given mask (c) Cloud-free (f) TVLRSDC (g) RTCR
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Fig. 12. (a) Given masks; (b) Pseudo-color images (R:B8, G:B4, B:B3) of the simulated target images in Cases 4-5 of Dongying dataset; (c) Cloud-free
images; (d)-(g) Cloud removal results by four methods; (h) Final mask by RTCR.

2) Inaccurate mask: There are two types of inaccuracy in
cloud masks: the mask contains misdetected clouds (i.e., over-
detection) and the mask has undetected clouds (i.e., under-
detection). The proposed RTCR can easily handle the former
(see Section III-D1), and we focus on the latter in the following
experiments.

To verify the robustness and effectiveness of the proposed
RTCR for cloud/shadow removal under inaccurate masks, we
add simulated clouds/shadows to the target images in Cases
1-2 of the Dongying dataset and Picardie dataset and denote
them as Cases 4-5. We use the cloud mask in Cases 1-2 as the
mask input of the proposed RTCR and the newly added clouds
represent the undetected clouds. We select non-blind methods
HaLRTC and WLR, and the blind method TVLRSDC as our
comparison method.

TABLE III
QUANTITATIVE EVALUATION OF CLOUD/SHADOW REMOVAL RESULTS BY

FOUR METHODS ON TWO DATASETS.

Dataset Case Index Target HaLRTC WLR TVLRSDC RTCR

Dongying

Case 4
PSNR 11.005 15.066 14.583 41.420 44.691
SSIM 0.8100 0.8955 0.8772 0.9894 0.9955

CC 0.3584 0.5854 0.5735 0.9936 0.9970

Case 5
PSNR 11.450 13.645 13.412 39.336 44.062
SSIM 0.8452 0.8921 0.8479 0.9873 0.9952

CC 0.0809 0.2626 0.2877 0.9854 0.9975
Time (min) — 3.054 4.879 9.738 3.610

Picardie

Case 4
PSNR 6.819 11.879 13.673 45.757 47.896
SSIM 0.7055 0.8530 0.7757 0.9912 0.9952

CC 0.0988 0.1398 0.1607 0.9559 0.9838

Case 5
PSNR 5.903 10.573 10.822 46.398 50.052
SSIM 0.6530 0.8413 0.7405 0.9912 0.9971

CC 0.0649 0.0068 0.0205 0.9597 0.9847
Time (min) — 1.047 4.971 4.542 1.508

To quantitatively and qualitatively evaluate the effect of
cloud removal, Table III reports the quantitative compari-
son of four methods in Cases 4-5 of the Dongying dataset
and Picardie dataset. Since the non-blind methods cannot

reconstruct the undetected cloud/shadow regions, they achieve
unsatisfactory results. Compare with all methods, it can be
seen that the RTCR achieves better performance in all three
evaluation measures in all cases of two datasets. Figs. 12-
13 (d)-(g) display the visual comparison of reconstructed
results by four methods in Cases 4-5 of Dongying dataset and
Picardie dataset. We observe that the non-blind methods fail
to remove the undetected cloud/shadow due to the inaccurate
mask. Both TVLRSDC and RTCR attain visually satisfactory
results compared with cloud-free images, which demonstrates
the two methods get rid of the dependence on the given
mask. For a deeper comparison, Figs. 14-15 shows the scatter
diagrams between the original and reconstructed pixels on
Dongying dataset and Picardie dataset, where the red points
represent the pixels under undetected cloud/shadow, and the
green represents the pixels under the cloud/shadow in the given
mask. We observe that HaLRTC completely fails to remove
the undetected cloud/shadow and WLR removes part of the
undetected cloud/shadow. From Fig. 14 (d) and Fig. 15 (d),
it can be seen that both the red and green points of RTCR
are more concentrated on the diagonal line than all methods,
which indicates the robustness and effectiveness of RTCR for
cloud/shadow removal under the inaccurate given mask. To
verify the effect of the mask refinement of RTCR, Figs. 12-
13 (a) and (h) show the given masks and the final masks by
RTCR. It can be observed that the proposed method captures
undetected clouds and shadows successfully.

From the experiments under the inaccurate mask, the pro-
posed RTCR shows promising performance in mask refine-
ment and information reconstruction, which circumvents the
shortages of both non-blind methods and the blind method
TVLRSDC.

Regarding the running time in Tables II and III, HaLRTC is
faster than RTCR, and RTCR is faster than ALM-IPG, WLR,
and TVLRSDC. Considering the cloud removal effects, the
proposed RTCR attains the best effect/efficiency trade-off.
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Fig. 13. (a) Given mask; (b) Pseudo-color image (R:B11, G:B7, B:B5) of the simulated target images in Cases 4-5 of Picardie dataset; (c) Cloud/Shadow-free
images; (d)-(g) Cloud/Shadow removal results by four methods; (h) Final mask by RTCR.

(c) TVLRSDC (d) RTCR(a) HaLRTC (b) WLR

Fig. 14. Scatter diagrams between the original and reconstructed pixels of the cloud-contaminated regions in Case 4 of Dongying dataset. The red points
represent the pixels in undetected cloud/shadow-contaminated regions, and the green represents the pixels in the cloud/shadow region of given masks.

(c) TVLRSDC (d) RTCR(a) HaLRTC (b) WLR

Fig. 15. Scatter diagrams between the original and reconstructed pixels of the cloud-contaminated regions in Case 4 of Picardie dataset. The red points
represent the pixels in undetected cloud/shadow-contaminated regions, and the green represents the pixels in the cloud/shadow region of given masks.

B. Real Experiment
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Fig. 16. Pseudo-color images of Bourgogne (R:B4, G:B3, B:B2) and
Bratislava1 (R:B11, G:B7, B:B5) datasets. (“MM/DD/YYYY” means the date
of taking the image.)

Two datasets are selected to test the performance of the
proposed RTCR under real scenarios. The pseudo-color images
of the referred datasets are shown in Fig. 16.

• Bourgogne2. This dataset is taken by Landsat-8 and each
time node contains 7 spectral bands with 30m spatial
resolution. The sub-images of size 600 × 600 × 7 of 4
time nodes are used in experiments.

• Bratislava1. This dataset is taken over Bratislava, Slo-
vakia, by Sentinel-2 and each time node contains 6
spectral bands with 20m spatial resolution. The full-
images of size 5490 × 5490 × 6 of 4 time nodes are
used in experiments.

We select Bourgogne dataset to test the effectiveness of
the RTCR under inaccurate masks. For cloud-contaminated
images, the corresponding cloud/shadow masks are also ac-
quired from the website2. Fig. 17 shows the pseudo-color
images of the target and reconstructed images on Bourgogne
dataset, where the same area of subfigures is enlarged for a
more detailed comparison. For the top row of Fig. 17, from
given masks and target images, there is an undetected cloud in
the upper right corner of the image. From Fig. 17 (c)-(g), all
non-blind methods cannot remove the undetected cloud due
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(a) Given mask (b) Target (c) HaLRTC (f) TVLRSDC(e) WLR(d) ALM-IPG (g) RTCR (h) Final mask

Fig. 17. (a) Given masks; (b) Pseudo-color images (R:B4, G:B3, B:B2) of the real target images on Bourgogne dataset; (c)-(g) Cloud/Shadow removal results
by all methods; (h) Final mask by RTCR.

to the inaccurate given mask. The blind method TVLRSDC
partly removes the undetected cloud and the proposed RTCR
completely removes it, which implies the superiority of an
adaptive threshold value in RTCR than the fixed in TVLRSDC.
For the bottom row of Fig. 17, from the enlarged area of (c)-
(g), it can be observed the proposed RTCR gains the best
detail reconstruction. Fig. 17 (h) shows the final masks by
RTCR, we can observe that the undetected cloud is captured.
The experiments on Bourgogne dataset verify the robustness
of the proposed RTCR for cloud removal under inaccurate
masks. Moreover, we select Bratislava dataset to test the ef-
fectiveness of the RTCR on large scene images. Fig. 18 shows
the pseudo-color images of target images and reconstructed
images by RTCR on Bratislava dataset. The corresponding
masks are generated by MSCFF [54]. It can be observed that
for both the large and small region contamination, RTCR can
finely reconstruct the underlying information. All experimental
results verify the effectiveness of the proposed RTCR on multi-
temporal images with scenes of different sizes.

C. Complexity Analysis

For an input image Y ∈ Rm×n×bt whose spatial size is
much larger than its spectral-temporal size, the main per-
iteration cost lies in the update of Fi(i = 1, 2, · · · , t) and
W. The major cost for updating Fi is computing an SVD on
mn× b matrix and the cost is O(mnb2). The major cost for
updating W is computing an SVD on mn× bt matrix and the
cost is O(mnr2t2), where r < b. So the cost of Algorithm 2
is O(mnr2t2). Compared with iterative optimization methods
HaLRTC, ALM-IPG, and TVLRSDC, whose computational
complexities are O(mnb2t2), the proposed algorithm enjoys
a lower computational complexity although it occupies more
running memory.

D. Discussion

1) Rationality behind the Threshold Algorithm: We explain
the rationality behind the proposed threshold algorithm. In the
algorithm, we use the minimum mean value of the spectral
pixels within the given cloud/shadow region as the threshold
value, which is adaptively and automatically calculated at
each iteration instead of predefined. Fig. 19 and 20 show
the results and corresponding PSNR values on Dongying
dataset and Picardie dataset. We can observe from Fig. 19
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(c) Mask(b) Reconstructed
Fig. 18. Pseudo-color images (R:B11, G:B7, B:B5) of the real target images
on Bratislava1 dataset, pseudo-color images of the cloud/shadow removal
results by RTCR, and corresponding masks.

and 20, the large threshold value (τ=0.80) leads to under-
detection of cloud/shadow, and the small threshold values
(Dongying dataset: τ=0.10; Picardie dataset: τ=0.20) lead
to over-detection while producing satisfactory results. This
observation motivates us to set the minimum mean value as
the threshold value. In addition, the result by the proposed
adaptive threshold algorithm is better than the best result of
fixed threshold values (Dongying dataset: τ=0.20; Picardie
dataset: τ=0.40), which demonstrates that the threshold can
adaptively adjust the threshold value and lead to a promising
performance.
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Fig. 19. Cloud/Shadow removal effect with respect to different threshold
values on Dongying dataset.

PSNR=6.819 PSNR=46.857 PSNR=47.138 PSNR=14.982 PSNR=47.896

=0.20 =0.40 =0.80Target image Adaptive
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Fig. 20. Cloud/Shadow removal effect with respect to different threshold
values on Picardie dataset.

2) Flexibility of the Proposed Model: We analyze the
optimal rank of the reshaped matrix with respect to dif-
ferent temporal intervals. The multi-temporal images with
short intervals (acquired times: 02/24, 02/27, 03/01, 03/06,
03/24, and 03/31/2021) and long intervals (acquired times:
05/20/2020, 05/30/2020, 09/17/2020, 09/22/2020, 02/24/2021,
and 02/27/2021) are selected from Picardie dataset. We use
the same mask as Cases 1-3 of Picardie dataset to generate
clouds/shadows. The r (dimension of the orthogonal basis)
is set as 5. Fig. 21 shows the changes of PSNR values with
respect to different ranks under different temporal intervals.
For the images with short temporal intervals, from Fig. 21 (a),
we can observe that the ideal rank is r, and the PSNR values
are stable when the rank is between r and 3r. For the images
with long temporal intervals, from Fig. 21 (b), we can observe
that the ideal rank is 2r, and the PSNR values are stable when
the rank is between 2r and 3r. For the different ideal ranks
corresponding to different temporal intervals, our model can
flexibly capture the redundancy of abundances with ground
cover changes by minimizing the nuclear norm in varying
degrees.

(a) Short temporal intervals (b) Long temporal intervals
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Fig. 21. Reconstruction performance with respect to the rank of the reshaped
matrix of abundance tensors under different temporal intervals.
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Fig. 22. Influence of the dimension of the orthogonal basis on the performance
of cloud removal on different datasets. (a) PSNR versus the dimension r; (b)
Running time versus the dimension r.

3) Influence of the Dimension of the Orthogonal Basis: The
size of orthogonal basis Fi is b×r in the proposed method. We
analyze the influence of the dimension r of the orthogonal ba-
sis on the performance of cloud removal. Picardie dataset and
Bourgogne dataset with complex scenarios (the ground truth
distributions including urban scenes, lakes, rivers, farmlands,
airports, etc.) are selected. Fig. 22 shows the changes in the
PSNR values and time (in seconds) with different dimensions.
From Fig. 22 (a) and (b), we can observe that the PSNR values
remain at a high level when the dimensions are larger than
4 and the running time is increasing with the increase of the
dimension. Thus, we set the size of the basis to be b×r (r < b)
instead of b× b for balancing efficiency and effectiveness.

4) Influence of the Temporal Number: We test the influence
of the temporal number on the reconstruction performance of
the proposed method. For an objective evaluation, we keep the
three target images in Cases 1-3 of Picardie dataset fixed and
sequentially introduce six reference images (acquired times:
03/31/2021, 03/06/2021, 02/27/2021, 03/29/2021, 05/20/2020,
and 09/17/2020) to change the temporal number. Table IV
displays the PSNR values of reconstructed results of target
images with different temporal numbers of reference images.
It can be observed that as the temporal number increases, the
PSNR values of all target images increase.

TABLE IV
PSNR (DB) VERSUS DIFFERENT TEMPORAL NUMBER OF REFERENCE

IMAGES ON PICARDIE DATASET.

Target image
Temporal number of reference images

1 2 3 4 5 6
03/24/2021 51.79 52.294 52.206 52.881 52.913 52.952
03/01/2021 47.253 50.332 50.515 50.647 50.703 50.734
02/24/2021 45.237 46.080 47.047 47.243 47.326 47.486

5) Influence of the Cloud Cover Ratio: We test the influence
of the cloud cover ratio on the reconstruction performance of
the proposed method. Dongying dataset and Picardie dataset
are considered for test and the simulated cloud/shadow of Case
1-2 in simulated experiments are added to the first two images.
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Fig. 23. Reconstruction performance with respect to different cloud cover
ratio on different datasets. (a) Dongying dataset; (b) Picardie dataset.

For the third image, we change the cloud/shadow cover ratio
from 5% to 75% with the increment 5%. Fig. 23 shows the
changes of PSNR values with respect to different cloud cover
ratios of the third image. It can be observed that the PSNR
values decrease with the increase of the cloud cover ratio.

6) Parameter Analysis: There are four parameters in the
proposed method, including the regularization parameters α
and β and penalty parameters γ and ρ. We use the PSNR
index as an evaluation indicator to analyze each parameter on
the Picardie dataset and the Bourgogne dataset.

Regularization parameters α and β: The parameters α
and β are used to balance the low-rank term, the sparse
term, and the fidelity term. Fig. 24 (a) shows that the PSNR
value changes when α is selected from the candidate set
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50} and the PSNR
value reach the highest value when α is 0.5. Fig. 24 (b) shows
that the proposed method achieves a satisfactory result when β
varies from 0.2 to 1. In the proposed method, we empirically
set α = 0.5 and β = 0.5 in all experiments.

Penalty parameters γ and ρ: The parameters γ and
ρ are utilized to balance the penalty term and other
terms. Fig. 24 (c) and (d) shows the PSNR value
changes when ρ and β are selected from the candi-
date set {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50}, re-
spectively. We observe that the PSNR remains at a high level
when γ is selected from {0.005, 0.01, 0.05, 0.1, 0.5, 1, 5} and
the PSNR reaches the highest value when ρ = 0.1. Thus, we
suggest the γ is selected from {0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}
and set ρ = 50 in all experiments.

7) Convergence behavior: We numerically analyze the con-
vergence behavior of the developed ALM algorithm. Defining
the relative change (RelCha) in kth iteration as

RelCha =
‖X k −X k−1‖F
‖X k−1‖F

,

Fig. 25 displays the curves of the RelCha value by Algorithm
2 on the Picardie dataset and Bourgogne dataset. It is clear that
for different datasets, the RelCha values gradually tend to zero.
This illustrates the convergence of the developed algorithm.

IV. CONCLUSION

In this paper, we have proposed a robust thick cloud/shadow
removal method for multi-temporal RS images. First, a
sparse term is introduced into the method to describe the
cloud/shadow component and an adaptive threshold algorithm
is proposed, which makes a robust cloud/shadow removal

under inaccurate given masks. Besides, a multi-temporal in-
formation reconstruction model is suggested. Based on our
key observation, the model uses a coupled tensor decom-
position to reproduce the latent multi-temporal relationship,
achieving faithful reconstruction of underlying information.
It is worth noting that the mask refinement and informa-
tion reconstruction are complementary and collaborative for
cloud removal since the refined mask will help to update
signatures, and the better-reconstructed results will benefit
the cloud/shadow components modeling. Finally, an efficient
ALM-based algorithm is developed to solve the proposed
model, and both simulated and real experiments on Sentinel-
2 L2A dataset and Landsat-8 OLI dataset under different
cloud/shadow contamination scenarios with accurate masks
and inaccurate masks are conducted. The experimental results
demonstrate the robustness and effectiveness of the proposed
method for thick cloud/shadow removal.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1. If F is a semi-orthogonal matrix, i.e., FTF = I,
where I is the identity matrix, then

arg min
A
‖X −A×3 F‖2F = arg min

A
‖X ×3 FT −A‖2F . (13)

Proof. According to [47], we have A×3 F = fold3(FA(3)).
Thus, formula (13) is equivalent to

arg min
A(3)

‖X(3)−FA(3)‖2F = arg min
A(3)

‖FTX(3)−A(3)‖2F . (14)

From the semi-orthogonality of F, i.e., FTF = I, we get

‖FA(3)‖2F = Trace
[
(FA(3))

T (FA(3))
]

= (AT(3)A(3)) = ‖A(3)‖2F .

Then, the derivation of (14) is as follows:

arg min
A(3)

‖X(3) − FA(3)‖2F

= arg min
A(3)

‖X(3)‖2F − 2
〈
X(3),FA(3)

〉
+ ‖FA(3)‖2F

= arg min
A(3)

‖FTX(3)‖2F − 2
〈
FTX(3),A(3)

〉
+ ‖A(3)‖2F

= arg min
A(3)

‖FTX(3) − A(3)‖2F .

The proof is completed.
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