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Abstract— Wheat variety identification from hyperspectral
images holds significant importance in both fine breeding and
intelligent agriculture. However, the discriminatory accuracy
of some techniques is limited due to insufficient datasets,
data redundancy, and noise interference. To address these
issues, we propose a wheat variety identification frame-
work called generate adversarial-driven cross-aware network
(GACNet), comprising a semi-supervised generative adversar-
ial network (GAN) for data augmentation and a cross-aware
attention network (CAANet) for variety identification. First,
the semi-supervised GAN (SSGAN) alleviates data scarcity by
generating fake hyperspectral images as realistically as possible
through learning the distribution hypothesis of real hyperspec-
tral images, while the discriminator distinguishes between real
and fake hyperspectral images. Subsequently, the CAANet is
employed for wheat variety identification, which leverages a
cascading cross-learning of 3-D and 2-D convolutions to fully
exploit spectral, spatial, and texture features and refines the
features through an embedded attention mechanism in the
cross-convolutional module. Additionally, we constructed a hyper-
spectral wheat variety dataset (HWVD) comprising 4560 samples
of 19 categories. Extensive experiments on our dataset demon-
strate that our GACNet outperforms state-of-the-art methods
for wheat variety identification. The HWVD will be made
available.

Index Terms— Cross-aware attention, generative adversarial
network (GAN), hyperspectral image, wheat variety identifica-
tion.
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I. INTRODUCTION

WITH a wide variety of wheat varieties entering the mar-
ket and meeting the needs of different populations, the

risk of wheat variety mixing has increased. However, mixing
seeds presents many challenges for fine breeding in intelligent
agriculture [1]. Traditional chemometric methods for seed
identification face limitations regarding seed destruction and
time-consuming identification processes, failing to meet the
demand for efficient and rapid identification of seed varieties
in modern agriculture. Hyperspectral imaging, on the other
hand, offers non-destructive, fast, and efficient identification
capabilities by capturing and analyzing spectral information
point by point in a spatial region, making it increasingly
attractive for agricultural seed identification [2], [3].

Currently, the main focus to improve the accuracy of
hyperspectral wheat variety identification is through data
augmentation and the development of effective identification
methods [4]. Data augmentation benefits from the generative
adversarial network (GAN), which excels in data genera-
tion thanks to the constant game characteristics between
the generator and discriminator. It is worth noting that rich
and diverse data significantly improve the robustness and
effectiveness of deep learning methods [5]. In terms of iden-
tification methods, traditional, machine learning, and deep
learning methods have been widely used in hyperspectral
image classification. Traditional discrimination methods in the
early years relied on hand-crafted features for hyperspectral
image classification [6], [7], while machine learning methods
employ hand-crafted or semi-automatically extracted features
for the hyperspectral image classification [8], [9], [10]. In con-
trast, deep learning methods can automatically extract valuable
features, leading to improved accuracy in hyperspectral image
classification [11], [12].

The primary challenges in hyperspectral wheat seed vari-
ety identification are the scarcity of hyperspectral seed
image datasets and the effective extraction and utilization of
hyperspectral image features for seed variety identification.
Consequently, the current focus on improving the accuracy
of hyperspectral seed variety identification revolves around
data augmentation and the development of robust identification
methods.

Regarding data augmentation, many strategies have been
employed to derive more representations from the raw data,
thereby enhancing both the quantity and quality of raw
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Fig. 1. Spectral band of six wheat varieties, real, and fake spectra generated by the SSGAN. It is worth noting that we only exhibit representative bands of
six wheat varieties. (a) 60th band in the hyperspectral image of wheat varieties with a resolution of 80 × 100 and 128 bands. (b) Spectral values correspond
to each band of the six wheat varieties after dimensionality reduction by the principal component analysis (PCA). (c) Real spectra of six wheat varieties
correspond to the fake spectra generated by the SSGAN.

data to harness the benefits yielded by increased data vol-
umes. Traditionally, researchers primarily employed geometric
transformations, color adjustments, and noise addition for
data augmentation [13], [14]. Additionally, some researchers
performed data augmentation using priori knowledge or trans-
forming multiple samples [15], [16]. However, traditional
data augmentation methods only amplify the data based
on external sample attributes, without fully considering the
intrinsic data characteristics. Recently, the prominence of con-
ditional GAN [17], CycleGAN [18], StyleGAN [19], diffusion
model [20], and Wasserstein GAN (WGAN) [21] in data
augmentation has risen due to their capacity to capture inherent
distributional properties during learning and inference. Hyper-
spectral images have higher dimensions, and high-dimensional
data leads to more complex data distributions, increasing the
risk of pattern collapse. Notably, WGAN uses Wasserstein
distance as the loss function can better solve the pattern
collapse issue. Hence, this study aims to investigate the
potential of WGAN in generating hyperspectral wheat seed
images.

Regarding hyperspectral seed image classification, vari-
ous methods including traditional, machine learning, and
deep learning approaches have found application. Traditional
discrimination methods relied on manually crafted features
for hyperspectral image classification [22], [23], whereas
machine learning techniques utilized hand-crafted or semi-
automatically extracted features for classification. In contrast,
deep learning methods automatically extract valuable fea-
tures, resulting in enhanced accuracy for hyperspectral image
classification [24]. Traditional convolutional neural networks
predominantly concentrate on image texture features, often
overlooking the spatial and spectral features of hyperspectral
images. With the evolution of CNNs, researchers [25], [26]
utilized the deep network structure of CNNs to extract hierar-
chical deep spatial features from hyperspectral images. Recent
deep learning methods [27], [28] leverage both spectral and
spatial features to boost classification accuracy. For instance,
Roy et al. [27] employed a 3D-CNN to extract spatial and
spectral features, along with a 2D-CNN for spatial features.
In our recent work [28], we employed 3-D convolution mod-

ules to extract spatial and spectral features of hyperspectral
corn seed images, along with 2-D convolution modules for
spatial and textural features. Thus, the effective utilization
of spatial, spectral, and textural features within hyperspectral
images remains pivotal in enhancing the performance of
hyperspectral seed variety identification.

In this work, we propose a generate adversity-driven cross-
aware network, called GACNet, for identify wheat varieties.
The GACNet employs a GAN to generate realistic data and
an effective discriminatory network model for hyperspectral
wheat variety identification. In the data augmentation stage,
our focus lies in the collaborative work between the generator
with multilayer perceptrons, the discriminator with multilayer
perceptrons, and the classifier to produce more realistic hyper-
spectral wheat images. In the wheat variety identification
stage, we explore how to fully utilize 3-D convolution, 2-D
convolution, and attention modules to construct an efficient
identification model. In Fig. 1, we showcase the real spectra
of the different wheat varieties after dimensionality reduction,
along with their corresponding fake spectra generated by the
semi-supervised GAN. Due to space constraints, only six
varieties are shown in Fig. 1. The fake spectra generated by our
proposed method closely resemble the real spectra, indicating
the effectiveness of our data generation approach. These gener-
ated samples significantly contribute to the performance of our
proposed cross-aware attention network (CAANet), leading
to higher classification accuracy and improved robustness in
identifying wheat varieties.

The main contributions of this work are summarized as
follows.

1) We construct a comprehensive HWVD, comprising
4560 samples of 19 wheat varieties. Among these,
2280 samples are real hyperspectral wheat samples, and
the remaining 2280 samples are generated hyperspectral
wheat samples. Each wheat variety includes 120 samples
with 128 bands, and the spatial resolution of each
sample is 80 × 110. This dataset not only facilitates the
application of deep learning methods in hyperspectral
agricultural seed identification but also holds significant
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value for screening and breeding different wheat vari-
eties.

2) We introduce a semi-supervised GAN (i.e., SSGAN)
that utilizes generator and discriminator networks with
multilayer perceptrons to generate hyperspectral wheat
images as realistically as possible. This is achieved by
constantly gaming the spatial and spectral distribution
characteristics between the input noises and the real
samples.

3) We propose a CAANet that employs cross-cascaded
three 3-D convolutional modules, three 2-D convo-
lutional modules, and three attention modules. The
network is specially designed to fully exploit the spatial,
spectral, and textural features embedded in the hyper-
spectral wheat variety images to enhance the model’s
effectiveness and robustness in wheat variety identifica-
tion.

II. BACKGROUND

This section provides an overview of the related work in
data augmentation and hyperspectral seed identification. The
details of each related work are as follows.

A. Data Augmentation

GANs have gained widespread adoption in diverse
image-related tasks such as orientation estimation [29], image
restoration [30], and data generation [31], primarily due to
their exceptional data generation capabilities. In the domain
of hyperspectral image augmentation and classification, GANs
have emerged as a valuable tool. Zhu et al. [32] made a
pioneering contribution by successfully applying GANs to
hyperspectral image classification, utilizing a 1-D GAN as
a spectral classifier and a 3-D GAN as a spatial–spectral
classifier, thereby introducing a novel approach to hyper-
spectral image classification. Wang et al. [33] designed a
GAN-assisted CapsNet for hyperspectral image classification,
exploring the capabilities of a 1-D structure triple GAN in
generating hyperspectral images and the classification capa-
bilities of CapsNet. Zhang et al. [21] investigated the positive
effects of GANs on smooth pre-training and classification
performance in hyperspectral classification models. Xie et al.
[34] proposed a self-spectral learning GAN for target detection
of hyperspectral images, fully utilizing spatial and spectral fea-
tures. Li et al. [35] introduced a sparse coding-inspired GAN
for anomaly detection in hyperspectral images, effectively
combining sparse coding and GANs to enhance detection
performance. Meanwhile, Wang et al. [36] extended the
application of GANs in hyperspectral images by proposing
a frequency-to-spectral mapping GAN for anomaly detection.
Inspired by the diffusion model, Chen et al. [20] propose a
generative framework for hyperspectral image classification,
which efficiently mines the distribution of highly and highly
redundant data by iterating, denoising, and explicitly building
the data generation process. Additionally, Yuan et al. [37] pro-
posed an efficient and controllable framework for generating
remote sensing pseudo-samples based on diffusion models.
However, the diffusion model is dedicated to high-dimensional

images with a small amount of data, and its performance
in generating diverse samples is unsatisfactory. In summary,
GANs have demonstrated wide utility in various hyperspectral
image applications and have played a prominent and positive
role in data augmentation and improving the performance of
deep learning classification models. Their ability to provide
more diverse and richer data has proven instrumental in
enhancing the effectiveness and robustness of such models.

B. Identification Methods

Currently, hyperspectral image identification methods can
be categorized into traditional techniques, machine learning
techniques, and deep learning techniques.

Traditional methods depend on the spectral characteristic
to employ manually extracted features for hyperspectral image
classification. For instance, He et al. [6] proposed a manual
feature extraction method based on multiscale covariance
maps that absorb and integrate spatial and spectral feature
information. Peng et al. [38] introduced a self-paced joint
sparse representation model using a self-paced learning strat-
egy to learn the weights of neighboring pixels, outperforming
the joint sparse representation model in terms of accuracy
and robustness. Additionally, Gan et al. [39] developed a
multifeature kernel sparse representation method to address the
limitations of linear sparse models in handling hyperspectral
images with highly nonlinear distributions. Fang et al. [40]
proposed a local covariance matrix method for character-
izing the correlation between different spectral bands and
spatial information in the scene. Gradually, methods such
as covariance pooling [41], low-rank regularization [42], and
covariance metric [43] have also been applied to hyperspectral
image classification. However, such methods are constrained
by their inadequate feature extraction performance and feature
redundancy.

Machine learning methods rely on manually or automati-
cally extracted features for hyperspectral image classification.
Gao et al. [44] proposed a method that integrates support vec-
tor machines and a probabilistic joint sparse model to compute
the posterior probabilities of test samples, outperforming most
classification methods on three datasets. Zabihzadeh et al. [45]
introduced a sparse Bayesian approach for metric learning
in the potential space, which is widely used in hyperspectral
image classification, handwritten digits, and face recognition.
Okwuashi et al. [8] designed a deep support vector machine
for hyperspectral image classification, verifying various kernel
functions and achieving higher classification accuracy. Su et al.
[46] proposed a KNN method based on random subspace for
hyperspectral image classification, utilizing a shape adaptive
neighborhood constraint in the framework of random subspace
integration to improve the traditional KNN’s classification
ability. Almoujahed et al. [47] classified hyperspectral images
of health and scab infection in the canopy of eight wheat
varieties using SVM, obtaining good classification accuracy.
However, this method struggled to achieve higher accuracy
with increased samples. In summary, machine learning meth-
ods face challenges in obtaining good classification results
for large-scale spectral data due to their insufficient feature
extraction capability.
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Fig. 2. Flowchart of the proposed GACNet for hyperspectral wheat variety identification. In our identification method, it includes an SSGAN and a CAANet.
In our SSGAN, it consists of a generator, a discriminator, and a classifier. Our SSGAN is mainly used to generate hyperspectral wheat images as actual as
possible by learning the distribution properties between noises and real samples. In our CAANet, it includes the 3DCM and the 2DCM with attention. Our
CAANet utilizes cross-cascade learning of 3-D and 2-D convolution modules to fully exploit spectral, spatial, and textural features of hyperspectral wheat
images. (a) SSGAN. (b) CAANet.

Deep learning methods typically employ unsupervised
or semi-supervised strategies to automatically extract valu-
able features to enhance the effectiveness and robustness
of discriminative models. These methods have found exten-
sive applications in various image-related tasks, including
underwater image enhancement [48], shadow removal [49],
low-light image enhancement [50], super-resolution [51], [52],
[53], [54], and remote sensing application [55], [56]. In hyper-
spectral image classification [57], [58], deep learning can fully
exploit and utilize pixel dependence for seed identification. For
instance, Sellami et al. [59] designed a semi-supervised 3-D
convolutional neural network (CNN) for hyperspectral image
classification, effectively reducing data dimensions and achiev-
ing good results in small sample classification. Haut et al. [60]
introduced a deep pyramidal residual network that improved
the utilization of spectral and spatial features in hyperspec-
tral images. Zhang et al. [61] developed a low-weight 3-D
CNN with transfer learning for hyperspectral image clas-

sification, effectively utilizing spatial, spectral, and textural
features to improve classification performance. Cao et al.
[62] leveraged the advantages of activation learning and deep
learning to improve the classification ability of traditional
CNN for hyperspectral images. Zhang et al. [63] designed a
spectral–spatial fractal residual to further explore the effects
of spectral and spatial features on classification performance.
Furthermore, Zhang et al. [28] explored the effectiveness of
spatial, spectral, and textural features for hyperspectral maize
seed identification. Recently, Huang et al. [64] have fully
integrated transformers with spectral and spatial features for
hyperspectral image classification. Additionally, Zhang et al.
[65] presented a cross-domain self-taught network that utilizes
an attention module and four residual modules to extract
deep spatial and spectral features. Overall, efficiently utilizing
spatial, spectral, and textural features in hyperspectral images
holds great significance for improving the performance of deep
learning methods.
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III. METHODOLOGY

In our work, we propose a hyperspectral wheat variety iden-
tification method called GACNet in Fig. 2, which comprises an
SSGAN for data augmentation and a CAANet for seed variety
identification. Notably, the data generated by the SSGAN is
used to improve the accuracy of identifying hyperspectral
wheat varieties.

A. Semi-Supervised GAN

Insufficient hyperspectral data poses serious challenges to
the identification of wheat varieties, leading to limitations
in the robustness and classification performance of the iden-
tification models. To address this issue, we explore data
augmentation techniques for hyperspectral wheat images to
enhance the effectiveness and robustness of the identification
model. Inspired by WGAN [21], we propose an SSGAN for
hyperspectral data augmentation by leveraging the correlation
between individual bands in hyperspectral images.

The detailed workflow of the SSGAN is in Fig. 2(a).
It includes a generator with four deconvolution layers, a dis-
criminator with four convolution layers, and a classifier with
four multilayer perceptrons. Initially, the generator generates
fake samples by mapping random noise from a potential
spatial mapping distribution. Subsequently, the discriminator
is employed to distinguish between real and fake samples
generated by the generator. If the generated sample meets the
convergence criteria of a real sample in the discriminator, it is
accepted as output. Otherwise, the network continues training
the generator and discriminator until convergence is achieved.
In other words, the generator inputs noise and class labels
and innovatively introduces conditional information to guide
the generator, so that the generator can generate images that
meet certain conditions or attributes and forcibly connects the
class labels input by the generator with the classifier to label
the generated images. Finally, the classifier assigns a specific
category label to the samples generated by the generator. The
loss functions employed to train the discriminator, generator,
and classifier are described as follows.

1) Discriminator Loss: The discriminator computes the
distance between the real distribution and the generated distri-
bution. To avoid gradient explosion or vanishing, we confine
the discriminator’s gradient variance between real and gen-
erated instances using a gradient penalty, which imposes the
Lipschitz condition [66] on the discriminator. The gradient
penalty interpolates between the real and generated samples.
The interpolated sample is defined as

x̂ = wx + (1 − w)x̃ (1)

where x represents the real sample, x̃ represents the sample
produced by the generator G processing the noise z, and x̂
denotes the interpolated sample. Furthermore, the weighting
factor w, which lies in the range [0,1], determines the extent
of interpolation between the real and generated samples.
Subsequently, the interpolation points are utilized to compute

the gradient norm, which is defined as

∥G N ∥2 =

√√√√ B∑
i=1

(∇ D(x̂))
2
+ δ (2)

where B is the batch size, ∇ D(x̂) is the interpolation point
between the real and generated samples, and D is the discrim-
inator. Besides, δ is a constant that approximates 0 to avoid
the error problem of the gradient norm. Whereafter, we take
the interpolation of the comparison between the gradient norm
and the target norm of the preset term as the gradient penalty
term, which is expressed as

GNP = wGP × (∥G N ∥2 − 1)2 (3)

where wGP is the weight of the gradient penalty. The loss
function of the discriminator combines the error and gradient
interpolation between the real sample distribution and the
generated sample distribution, which is expressed as

LossD = − E
x∼Pr

[D(x)] + E
x̃∼Pg

[D(x̃)] + E
x̂∼Px̂

[GNP] (4)

where Pr and Pg are the distributions of real samples and
generated samples, respectively, and E denotes the expectation
operator.

2) Generator Loss: The generator’s objective is to minimize
the discrepancy between the distribution of real and generated
samples. During the initial training stage, the discriminator
can easily distinguish real samples from the generated ones,
causing 1− D(G(Z)) to with D(G(Z))) approaches 0. Hence,
we maximize D(G(z)) during the training of the generator
training, aiming to maximize the distance between the noise
distribution and the generated samples’ distribution. In this
work, the generator’s loss function is defined as

LossG = − E
z∼Pz

[D(G(z))] (5)

where z is random noise, and Pz is the distribution of random
noise.

3) Classifier Loss: The classifier’s task is to label the
samples generated by the generator with labels correspond-
ing to real wheat varieties. As the generator’s samples are
unlabeled, we introduce an additional classifier that receives
the generated samples as input and assigns specific labels to
them. In the training phase of the classifier, we utilize the
Mixup data augmentation technique [67], which randomly
applies linear weighted fusion to the features and labels of
two samples to create a new sample with labels. This linear
combination requires the model to consider both original
samples’ labels during classification. Implementing Mixup
augments the diversity of training samples, enhancing the
model’s generalization across different samples. Therefore, the
classifier’s loss function is defined as

LossC = −
1
N

1
C

N∑
m=1

C∑
n=1

(λ yi + (1 − λ )y j ) log(qmn) (6)

where λ is a randomly sampled weight from the beta distribu-
tion, controlling the degree of linear weighting between two
samples and taking values in the range [0, 1]. N and C denote
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the number and class of wheat samples, respectively. y1 and
y2 represent the real labels of the first and second samples,
respectively, and qmn denotes the predicted probability of the
nth category of the mth sample.

Finally, the overall objective loss function of our proposed
SSGAN is defined as

LossT = LossD + LossG + α × LossC (7)

where α is the weight used to control the importance of the
classifier’s loss in the overall optimization process.

B. Cross-Aware Attention Network

The 3-D convolution module [27], [28] primarily focuses
on extracting spectral and spatial features from hyperspectral
images, while the 2-D convolution module [27], [28] focuses
on spatial and textural features. To fully leverage the benefits
of both 3-D and 2-D convolution modules for hyperspectral
feature extraction, we propose a CAANet for hyperspectral
wheat variety identification. The architecture of the CAANet
is shown in Fig. 2(b), which consists of three cascaded
cross-perception modules and three fully connected layers.
Each cross-perception module is composed of a 3-D convo-
lution module, a 2-D convolution module, and an attention
module. First, the 3-D convolutional module extracts spatial
and spectral features from hyperspectral wheat images. Sub-
sequently, the 2-D convolution module further captures spatial
and textural features. Lastly, the attention module refines and
optimizes the extracted features. The sequential arrangement
of these three modules enables a more comprehensive exploita-
tion of deeper features. Afterward, the fully connected layers
maps the features extracted by the cross-perception modules
to probability distributions for different categories. The first
two fully connected layers employ the LeakyReLU activation
function to introduce nonlinearity, effectively accommodating
complex relationships between features and seed varieties.
In the output layer, the softmax function is utilized to trans-
form category scores into probability values for the final
classification decision. The details of the 3-D convolution
module, the 2-D convolution module, and the attention mech-
anism are described as follows.

1) Three-Dimensional Convolution Module: Hyperspectral
images require capturing both spectral and spatial information
encoded in multiple frequency bands. Therefore, the 3-D
kernel is employed to generate a convolved feature map across
multiple contiguous bands in the input layer, enabling the
extraction of spatial dimensions and interspectral features.
In the 3-D convolution operation, the activation function of
obtaining the j th feature map at the spatial location (x, y, z)
of the i th layer is formulated as

F x,y,z
i, j

= fa

 Ji−1∑
j=1

L i∑
l=0

Wi∑
w=0

Hi∑
h=0

w
l,w,h
i, j × F x+l,y+w,z+h

i−1, j + δi, j

 (8)

where fa() is the LeakyRelu activation function, w
l,w,h
i, j is the

weight of the convolution kernel connected to the j th feature
map at the position (l, w, h), Ji−1 is the number of feature

maps of the (i − 1)th layer, δi, j is the bias value of the j th
feature map of the i th layer, L , W , and H are the dimensions,
width, and height of the 3-D convolution kernel, respectively,
and l, w, and h are the indexes in the three dimensions during
the convolution process.

2) Two-Dimensional Convolution Module: For hyperspec-
tral images, it is essential to extract both spatial and textural
features from each band. To achieve this, we first reshape the
3-D hyperspectral data into a 2-D format by flattening it. The
2-D convolution operation obtains a feature map by calcu-
lating the dot product between the data and the convolution
kernel to compute spatial and textural features of hyperspectral
images of wheat. LeakyRelu is used as the activation function.
Mathematically, the process is defined as

F x×y,z
i, j

= fa

 Ji−1∑
j=1

(L×W )i∑
l×w=0

Hi∑
h=0

w
l×w,h
i, j × F (x+l)×(y+w),z+h

i−1, j + δi, j

 (9)

where L × W is the width of the reshaped hyperspectral
data, H is the height of the reshaped hyperspectral data, fa()

is the LeakyRelu activation function, Ji−1 is the number of
feature maps of the (i − 1)th layer, δi, j is the bias value of
the j th feature map of the i th layer, w

l×w,h
i, j is the weight

of the convolution kernel connected to the j th feature map
at the position (l × w, h), and Ji−1 is the number of feature
maps of the (i − 1)th layer. Meanwhile, l × w, and h are
the indexes in the two dimensions during the convolution
process.

3) Convolutional Attention Module: This module is
designed to refine the spatial, spectral, and textural features
extracted from the hyperspectral images. The convolutional
attention module (CATM) includes the channel and spatial
attention modules, as shown in Fig. 3. The channel attention
module compresses the feature map in the spatial dimension
to obtain a 1-D vector. It employs average pooling and max
pooling to aggregate the spatial information of the feature map
and forward it to a shared network. The spatial dimension
of the input feature map is compressed and the elements are
summed up to produce the channel attention feature map. The
average pooling operation and max polling operation of the
input matrix Xi, j with a dimension of H × W are expressed
as

Fc
avg =

1
H × W

H∑
i=1

W∑
j=1

Xi, j (10)

and

Fc
max = max(Xi, j ), i ∈ {1, . . . , H}, j ∈ {1, . . . , W } (11)

where max() is the max pooling function. Therefore, we can
redefine the expression of channel attention as

FCAM = Sigmoid
(
MLP

(
Fc

avg

)
+ MLP

(
Fc

max

))
⊙ F (12)

where F is the input feature, ⊙ is an element-by-element mul-
tiplication operation, MLP() is a multilayer perceptron. The
spatial attention module compresses in the channel domain and
thus applies average pooling and max pooling in the channel
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Fig. 3. Flowchart of the convolutional attention module. It consists of a channel attention module and a spatial attention module. The former module is
mainly used to extract texture features of wheat hyperspectral images, and the latter is mainly used to extract spatial features of wheat hyperspectral images.

TABLE I
DETAILS OF THE RAW AND GENERATED WHEAT HYPERSPECTRAL SAMPLES

Fig. 4. Acquisition device of hyperspectral imaging system.

dimension. Max pooling extracts the maximum value in the
channel, while average pooling computes the average value
in the channel. Afterward, we concatenate the compressed
feature maps and pass them to another convolution layer. The
mathematical expression of the spatial attention module is

FSAM = Sigmoid
(

Conv
(

Concat
(

F s
avg, F s

max

)))
⊙ F. (13)

Finally, CATM performs an elementwise multiplication of
the channel attention feature map and the spatial attention
feature map to obtain the final attention feature map, which is
expressed as

FCATM = FSAM(FCAM(F)). (14)

4) Objective Loss: As a multiple-class wheat variety
identification problem, the cross-entropy is adopted as the
loss function [68]. The cross-entropy calculates the distance
between two probability distributions and determines the
degree of similarity between two probability distributions by
the magnitude of the distance. The formula for cross-entropy
loss is expressed as

LossCE = H(p) + DKL(p||q). (15)

In (15), H(p) is the entropy of the true distribution calculated
as H(p) = −

∑N
i=1 p(xi ) log p(xi ), where p(xi ) is the distri-

bution of real labels. DKL(p||q) is the KL scatter of the true
label distribution and the predicted probability distribution,
which is calculated as

DKL(p||q) =

N∑
i=1

p(xi )
[
log p(xi ) − log q(xi )

]
(16)

where q(xi ) is the predicted probability distribution, and N is
the total class of wheat varieties. The LossCE of the proposed
discrimination model CAANet is redefined as

LossCE

= −

N∑
i=1

p(xi ) log p(xi ) +

N∑
i=1

p(xi )
[
log p(xi ) − log q(xi )

]
= −

N∑
i=1

p(xi ) log q(xi ). (17)

IV. EXPERIMENT AND ANALYSIS

In this section, we first introduce the constructed hyper-
spectral wheat variety dataset (HWVD), followed by the
implementation details of the proposed CAANet, the eval-
uation metrics, the identification results, and the ablation
analysis.

A. Hyperspectral Wheat Variety Dataset

We created an HWVD consisting of 4560 samples from
19 wheat varieties, including 2280 real hyperspectral wheat
samples and 2280 synthetic hyperspectral wheat samples gen-
erated using our proposed SSGAN. Table I provides details
about the hyperspectral images of the 19 wheat varieties in
the dataset.
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Fig. 5. 75th spectral band of 19 wheat seeds. (a)75th spectral band of Zhengmai 101. (b) 75th spectral band of Zhengmai 366. (c) 75th spectral band of
Zhengmai 7698. (d) 75th spectral band of Bainong 207. (e) 75th spectral band of Bainong AK58. (f) 75th spectral band of Bainong 307. (g) 75th spectral
band of Bainong 4199. (h) 75th spectral band of Zhoumai 28. (i) 75th spectral band of Zhoumai 36. (j) 75th spectral band of Jimai 22. (k) 75th spectral band
of Xinmai 32. (l) 75th spectral band of Zhongyu 9307. (m) 75th spectral band of Zhongmai 578. (n) 75th spectral band of Zhongmai 18. (o) 75th spectral
band of Shangmai 167. (p) 75th spectral band of Xinong 511. (q) 75th spectral band of Yuyuan 916. (r) 75th spectral band of Luomai 28. (s) 75th spectral
band of Fengde 21.

Fig. 6. Average spectra of the raw and generated wheat hyperspectral samples by SSGAN. Notably, the average spectra of samples generated by our proposed
SSGAN fit the average spectra of the raw samples better.

For the 2280 real samples of wheat varieties, we used the
SOC 710 portable visible/near-infrared imaging spectrometer
to capture spectra from the dorsal and ventral surfaces of
wheat seeds. The setup of the acquisition device of the

imaging system is shown in Fig. 4. The spectrometer’s spec-
tral range is 400–1000 nm with a spectral resolution of
4.6875 nm, providing 128 bands. The image resolution is
696 × 520 pixels. We utilized the ENVI software to convert
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TABLE II
EVALUATION MATRIX OF IDENTIFICATION RESULTS OF WHEAT HYPERSPECTRAL IMAGES

the raw hyperspectral images into a standard data format
and then extracted regions of interest with a resolution of
80×110 pixels. Specifically, each real wheat variety comprises
120 samples with 128 bands, and the spatial resolution of each
sample is 80 × 110 pixels. As a demonstration, Fig. 5 shows
the 75th band of the 19 wheat varieties in the dataset, namely
Zhengmai 101, Zhengmai 366, Zhengmai 7698, Bainong 207,
Bainong AK58, Bainong 307, Bainong 4199, Zhoumai 28,
Zhoumai 36, Jimai 22, Xinmai 32, Zhongyu 9307, Zhongmai
578, Zhongmai 18, Shangmai 167, Xinong 511, Yuyuan 916,
Luomai 28, and Fengde 21.

For the generated 2280 samples of wheat varieties, we first
employed the PCA to preprocess the raw wheat hyperspectral
image by compressing it from 128 bands to 25 bands. Sub-
sequently, SSGAN inputs noise and labels into the generator
to generate fake samples, while it inputs real samples into
the discriminator to determine whether the generated fake
sample conforms to the data distribution characteristics of the
real sample. Finally, the classifier labels the fake samples to
their corresponding wheat variety categories. Fig. 6 illustrates
the average spectrum of the raw and generated wheat hyper-
spectral samples by the SSGAN. It is worth noting that the
samples generated by our proposed SSGAN show exceptional
agreement with the hyperspectral images of 19 wheat varieties.

B. Implementation Details

Our GACNet is trained and tested on the constructed
HWVD presented in Section IV-A. Specifically, it is tested
on 2280 samples of real wheat varieties, 2280 samples of
generated wheat varieties, and 4560 samples of a mixture of
real and generated wheat varieties, respectively. The training
and testing data are split by a 4:1 ratio. The GACNet is
implemented on a Windows 11 PC with an AMD Ryzen 7
3700X 8-Core CPU running at 3.6 GHz, 48 GB memory,
an NVIDIA GeForce GTX 3060 GPU, and the PyTorch Deep
Learning Toolbox. The GACNet consists of two main subnet-
works: a data augmentation subnetwork (SSGAN) and a wheat
variety identification subnetwork (CAANet). For the training
of the SSGAN, the batch size is set to 8, and the optimizer
uses RMSprop with a smoothing parameter of 0.99 and a
constant parameter of ε = 10−8 to prevent the denominator
from being zero. The learning rate is set to 5 × 10−5, and
the network is trained for 1000 iterations. For the training of
the CAANet, the batch size is set to 16, the optimizer uses
Adam with attenuation rate parameters of 0.9 and 0.999, the
learning rate is set to 5 × 10−3, and the network is trained for
200 iterations. We also introduced the Dropout mechanism in
the fully connected layer of CAANet to prevent overfitting by
setting 20% of the nodes to 0.

C. Evaluation Metrics

To comprehensively evaluate the performance of our GAC-
Net for identifying hyperspectral images of wheat varieties,
we used four commonly- metrics: precision (AP ), recall (AR),
F-score (F1), accuracy (AT ), and kappa coefficient (K A). For
the identification results, it includes four cases: true positive
(TP), false positive (FP), false negative FN, and true negative
(TN). AP represents the proportion of samples with correct
prediction results in the samples that have been predicted to
be positive. AR denotes the proportion of correctly predicted
positive samples out of all positive samples. F1 is the recon-
ciled value of the precision AP and recall AR , which can better
compensate for the one-sidedness of evaluating the prediction
results of the model only by the precision AP or recall AR . AT

represents the proportion of the number of correctly predicted
samples in the total number of test samples. K A is a metric to
measure classification accuracy, and the higher its value, the
better the classification result. Table II provides the evaluation
matrix of identification results of wheat hyperspectral images.

D. Identification Results

We conducted extensive experiments and analysis on the
constructed dataset to evaluate the identification performance
of our GACNet for wheat varieties. The evaluation was per-
formed on the only real dataset, only generated dataset, and
mixed dataset of real and generated samples of wheat varieties.
Table III presents the discriminative results of our GACNet
and nine comparison methods on the three experimental
datasets. The comparison methods include machine learning
methods: KNN [10], DT [70], RFA [69], and FSVM [2];
and deep learning methods: MSDNet [71], 3DCNN [72],
HybridSN [27], A2S2K-ResNet [73], SSTNet [28], and Mor-
phFormer [74]. For the comparison methods, we implemented
the source code and parameters provided by the authors.

1) Quantitative Evaluation on the Real Dataset: As shown
in Table III, traditional machine learning methods such as
KNN [10], RFA [69], and DT [70] achieve relatively poor
identification performance. FSVM [2], a machine learning
method that utilizes spectral and spatial features, outperforms
KNN [10], RFA [69], and DT [70]. Among the deep learn-
ing methods, MSDNet [71], 3DCNN [72], HybridSN [27],
A2S2K-ResNet [73], and MorphFormer [74] demonstrate bet-
ter identification ability by fully exploiting spectral and spatial
features. SSTNet [28] and our GACNet, which consider tex-
ture features in addition to spectral and spatial features, exhibit
even better identification performance. In comparison, our
proposed GACNet outperforms all compared methods in terms
of AP , AR , F1, AT , and K A scores, achieving the highest or
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TABLE III
QUANTITATIVE SCORES OF THE IDENTIFICATION RESULTS OF OUR GACNET WITH THE COMPARED METHODS TESTED ON THE REAL, GENERATED,

AND MIXED DATASETS. THE BEST RESULTS IN THE TABLE WE MARK IN RED, WHILE THE SECOND BEST RESULTS WE MARK IN BLUE

approximate-highest scores of 0.9878, 0.9858, 0.9868, 0.9868,
and 0.9861, respectively.

2) Quantitative Evaluation on the Generated Dataset: The
identification results for the generated dataset are lower than
those for the real dataset for all methods. This can be attributed
to overfitting certain standard features, leading to less diverse
feature representations in the generated samples compared
to the real samples. Despite the reduction in discrimination
results, our GACNet still exhibits the highest discrimination
score among all methods.

3) Quantitative Evaluation on the Mixed Dataset: The
identification scores for all methods on the mixed dataset are
generally improved compared to the only real dataset and
only generated dataset. RFA [69] and DT [70] consistently
underperform other machine learning methods, likely due to
the limited handling capability of highly correlated features
of these tree-based machine learning algorithms. FSVM [2]
achieves better performance by mapping nonlinear spectral
data into high-dimensional space, and thus solving complex
nonlinear problems with linear transformations. Among deep
learning methods, A2S2K-ResNet [73] and MSDNet [71]
achieve lower accuracy than other methods due to insufficient
consideration of spatial information in hyperspectral images.
3DCNN [72] and HybridSN [27] fail to adequately incorporate
attentional modules for dynamic feature selection, leading
to unsatisfactory classification performance. In contrast, our
proposed CAANet addresses these shortcomings by effectively
integrating spatial and spectral information. This integration
enables the model to learn more abstract and complex features,
leading to superior identification performance compared to
existing methods.

4) Quantitative Evaluation on the Houston Dataset [75]:
To demonstrate the generalization performance of our method,
we employed GACNet with the compared methods experi-
mentally evaluated on the public Houston dataset [75]. The
hyperspectral image has a resolution size of 340 × 1905 with
144 spectral bands, wavelengths of 0.38–1.05 um, and a spatial
resolution of 2.5 meters per pixel. It contains 15 different
classes and consists of disjoint training and test samples. From
Table IV, our GACNet outperforms the compared methods in
terms of classification performance for the Houston dataset.
Due to limited space, we only present the test sample in
Fig. 7(a) and the test results of our method in Fig. 7(b).

Fig. 7. Predicted results of our method experiments on the Houston dataset.
(a) Test samples. (b) Predicted results of our method.

TABLE IV
QUANTITATIVE SCORES OF THE IDENTIFICATION RESULTS OF OUR GAC-

NET WITH THE COMPARED METHODS TESTED ON THE HOUSTON
DATASET [74]

Overall, our GACNet has good discrimination performance
for both our constructed and publicly available datasets.

Fig. 8 illustrates the training loss and test accuracy of our
GACNet on real, generated, and mixed datasets. Fig. 8(a)
and (b) shows the results on real dataset. As shown in Fig. 8(a),
our GACNet demonstrates faster convergence in the initial
50 epochs, followed by a stabilization of the loss from epochs
50–180. After 180 epochs, the model’s loss continues to
stabilize and eventually converges to 0. Fig. 8(b) shows that
the test accuracy does not achieve satisfactory results due to
the presence of more categorization categories and a limited
number of training data, leading to difficulties for the model
in learning more diverse features. Fig. 8(c) and (d) shows
the results on generated dataset. As shown in Fig. 8(c), our
GACNet converges rapidly before reaching 40 epochs, and it
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Fig. 8. Training loss and test accuracy of the GACNet experiments on the
real, generated, and mixed dataset. (a)–(f) Loss and accuracy convergence
versus the number of epochs of our GACNet training on the real, generated,
and mixed datasets.

stabilizes and delivers better results after 150 epochs. However,
the lower accuracy of the test set depicted in Fig. 8(d) suggests
that the network may be overfitting to certain samples from
the same class. Compared to Fig. 8(a)–(d), Fig. 8(e) and (f)
demonstrates the faster convergence and higher test accuracy
of our GACNet experiments on the mixed dataset. Overall,
our analysis indicates that GACNet exhibits swift convergence
performance and commendable discrimination capability.

Additionally, Fig. 9 shows the confusion matrices of the
GACNet experiments conducted on real, generated, and mixed
datasets. There are 24 testing data for each variety in both the
real and generated datasets, and 48 testing data for each variety
in the mixed dataset. In Fig. 9(a), the CACNet achieves an
impressive 100% accuracy in identifying 15 wheat seeds and
maintains an accuracy of over 90% for 4 other types of wheat
seeds on the real dataset. Similarly, Fig. 9(b) illustrates that
our CACNet achieves 100% accuracy in identifying 13 wheat
seeds and maintains an accuracy of over 90% for 6 other types
of wheat seeds on the generated dataset. Fig. 9(c) showcases
our CACNet’s exceptional performance, achieving 100% accu-
racy in identifying 14 wheat seeds and achieving over 95%
accuracy for 5 other types of wheat seeds on the mixed dataset.
Notably, the classification accuracies of all categories show
significant improvements, providing compelling evidence that
our CACNet effectively enhances the sample diversity and
thereby improves the overall identification accuracy.

TABLE V
PERFORMANCE ANALYSIS OF EACH ABLATION MODEL EXPERIMENT IN

OUR GACNET. THE BEST RESULTS IN THE TABLE WE MARK IN RED,
WHILE THE SECOND BEST RESULTS WE MARK IN BLUE

E. Ablation Study

To assess the effectiveness of each module in our pro-
posed GACNet for wheat variety identification, we conducted
ablation studies. Specifically, we examined the performance
of the following configurations: 1) the GACNet without the
SSGAN (-w/o SSGAN); 2) the GACNet without the Mixup
(-w/o Mixup); 3) the GACNet without the 3-D convolution
module (-w/o 3DCM); 4) the GACNet without the 2-D con-
volution module (-w/o 2DCM); and 5) the GACNet without
the convolutional attention module (-w/o CAM).

Table IV presents the quantitative classification results of
the ablated models on the HWVD. Upon analyzing the results
from Table V, the following observations can be made.

1) -w/o SSGAN: Removing the semi-supervised GAN
from our GACNet leads to a reduction in classifica-
tion performance. Notably, the ablation experiment was
implemented without generated dataset. The main reason
behind this is the limited generalization performance of
the model due to insufficient samples. Notably, three
subsequent ablation experiments were implemented on
mixed dataset.

2) -w/o Mixup: The classification performance of our
GACNet is weakened by removing the Mixup. The
Mixup technology randomly applies linear weighted
fusion to the features and labels of two samples to create
a new sample with labels.

3) -w/o 3DCM: The classification performance of our
GACNet is significantly affected by removing the 3-D
convolution module. The 3DCM is crucial for extracting
spatial and spectral features of wheat hyperspectral
images.

4) -w/o 2DCM: The classification performance of our
GACNet is diminished when excluding the 2-D convo-
lution module. The 2DCM plays a vital role in capturing
spatial and textural features of wheat hyperspectral
images.

5) -w/o CAM: Removing the attention module from our
GACNet results in decreased classification performance.
The attention module is primarily used to re-refine
features, but its impact on GACNet is relatively less
pronounced.

In contrast, our full-model GACNet demonstrates the best
results for each evaluation metric score, which further con-
firms that each module significantly contributes to the overall
effectiveness of our GACNet.
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Fig. 9. Confusion matrix of GACNet experiments on the real, generated, and mixed datasets. (a) Confusion matrix of GACNet experiments on the real
dataset. (b) Confusion matrix of GACNet experiments on the generated dataset. (c) Confusion matrix of GACNet experiments on the mixed dataset.

V. CONCLUSION

In this article, we introduce GACNet, a generative
adversarial-driven cross-aware network, for non-destructive
hyperspectral wheat seed identification. The GACNet employs
an unsupervised GAN (SSGAN) for data augmentation and a
CAANet for seed variety identification. Thorough experimen-
tal validation demonstrates the superior performance of our
GACNet in both data augmentation and seed variety identifi-
cation tasks. Specifically, the SSGAN subnetwork effectively
learns the distributional properties of real samples and
generates realistic synthetic samples, thereby positively influ-
encing GACNet’s generalization performance. Meanwhile, the
CAANet subnetwork demonstrates improved spatial, spectral,
and texture extraction capabilities, further contributing to the
enhanced classification performance of GACNet. Compared to
nine state-of-the-art methods, our GACNet achieves superior
quantitative evaluation scores in identifying wheat varieties,
demonstrating the effectiveness and generalizability of our
proposed network model.

Throughout the experimental design, we encountered sev-
eral challenging issues. Hyperspectral data possesses high
feature dimensions and multimodality, leading to potential
inaccuracies in generated samples. Additionally, tuning the
GAN becomes more complex due to the need for differ-
ent hyperparameter settings for various hyperspectral image
datasets and application scenarios. Moreover, factors like
different years and origins may also impact the model’s
generalizability. To address these issues, we plan to expand
the dataset to cover a more diverse range of seed varieties,
origins, and ages, and explore the design of more efficient
identification models in future research.
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