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Abstract— Thermal infrared hyperspectral imagery presents
a superior capability for capturing intricate spectral details
of atmospheres and ground objects compared to multispec-
tral images, thus offering a more nuanced dataset for land
surface temperature (LST) retrieval. However, extensive inter-
band correlations pose computational challenges and undesirable
“dimension disaster” problems. To address this issue, this article
proposes a purpose-built framework of thermal infrared hyper-
spectral band selection (BS) using a graph neural network for
LST retrieval. Specifically, the thermal infrared hyperspectral
data is first mapped onto a graph topology, followed by feeding
it into a graph attention module with brightness temperature
constraints to extract band features. Following this, the extracted
band features undergo a comprehensive analysis through a
multiscale convolution module consisting of convolution ker-
nels with multiple sizes, which have more variety and larger
receptive fields for calculating the correlation between different
band features, assigning different weights to each band. Finally,
a weight selection module is designed to filter the bands based
on their assigned weights, creating a subset of bands with
greater significance for LST retrieval. Training the designed
model, 65 100 observations are simulated utilizing MODTRAN,
with 80% allocated for training and 20% for testing. The
experimental results validate the effectiveness of the proposed
model, with a root mean square error (RMSE) of 1.85 K in
practical applications on IASI imagery. This accomplishment
substantiates the model’s capacity to reliably employ a judiciously
selected subset of thermal infrared hyperspectral bands for LST
retrieval applications, thus offering a promising contribution
to the advancement of thermal infrared hyperspectral image
processing methodologies.
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I. INTRODUCTION

LAND surface temperature (LST) is one of the most
important climate system variables. Because of its ability

to characterize longwave radiation and turbulent heat fluxes
at the land-atmosphere interface, it has played a crucial
role in estimating soil moisture [1], [2], [3], [4], monitoring
drought [5], [6], [7], estimating evapotranspiration [8], [9],
[10], monitoring the effects of global warming [11], [12],
[13], [14], quantifying the urban heat island effect [15], [16],
and predicting crop maturity and pests [17], [18]. Advances
in aerospace technologies have facilitated the acquisition of
LST data on a global scale through thermal infrared remote
sensing satellites. Numerous algorithms have been developed
to extract LST from thermal infrared remote sensing data [19],
delineated into broad categories that include traditional statis-
tical modeling methods and contemporary deep learning-based
approaches.

Traditional statistical modeling methods for LST retrieval
encompass various approaches, notably single-channel algo-
rithms, multichannel algorithms, and other techniques. The
single-channel algorithm, a prominent method, utilizes data
from a singular thermal infrared channel, integrating it with
surface emissivity and atmospheric water vapor content to
retrieve LST. Qin et al. [20] undertook foundational work
in this domain, which has been richly extended by other
scholars in subsequent studies [21], [22], [23]. To mitigate
reliance on atmospheric parameters, McMillin proposed a
split-window algorithm, leveraging the differential absorption
of atmospheric water vapor between two adjacent thermal
infrared channels to ascertain temperature [24], [25], [26],
[27]. Over the past four decades, additional algorithms have
emerged, including the temperature emissivity separation
(TES) algorithm [28], multiangle [29], and multitemporal
phase [30] approaches. Furthermore, thermal infrared hyper-
spectral remote sensing imagery, characterized by its rich
surface feature information and near-continuous spectral res-
olution, provides a new way for LST retrieval, such as the
algorithm proposed by Broel [31], which utilizes spectral
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smoothness as a constraint for LST retrieval. However, these
methodologies often require either precise atmospheric cor-
rection or exact surface emissivity data, posing significant
challenges in practical scenarios.

In recent years, deep learning methods have been widely
applied and studied in the field of LST retrieval from hyper-
spectral thermal infrared data [32], [33], [34], [35]. Deep
learning’s capacity for resolving nonlinear issues and han-
dling high-dimensional data, owing to its potent learning
and adaptive abilities, presents a substantial advancement.
Lan et al. [36] proposed a deep mixing model and retrieved
LST from infrared atmospheric sounding interferometer (IASI)
data. Given that deep learning is inherently data-driven, the
performance of these methods is proportional to the spectral
resolution of remote sensing images and the richness of the
spectral data. While, these algorithms often overlook the
criticality of band selection (BS) in hyperspectral remotely
sensed data, which typically comprises hundreds to thousands
of bands, encapsulating a broad spectrum of electromagnetic
wave information. Despite their information richness, hyper-
spectral images are prone to data redundancy due to their
continuity and correlation, potentially leading to increased
computational demands and the risk of dimensional catas-
trophe. Consequently, dimensionality reduction has become a
mainstream and necessary preprocessing technique for hyper-
spectral data [37].

Dimensionality reduction of hyperspectral data, a critical
step in data preprocessing, is primarily achieved through
two approaches: feature extraction (FE) and BS. FE aims
to enhance separability and representativeness by mapping
original data into a new feature space. Common methods in
this category include principal component analysis (PCA) [38]
and independent component analysis (ICA) [39]. Conversely,
BS focuses on choosing the most representative bands from the
original dataset, aiming to reduce redundancy while preserving
the inherent physical properties of the data. This approach is
notable for its superior data interpretability compared to FE.

BS methods are broadly classified into supervised, semi-
supervised, and unsupervised categories. Supervised methods,
requiring data labeling, are esteemed for their impres-
sive outcomes despite the labeling challenges. For instance,
Cao et al. [40] introduced a supervised machine-learning
algorithm for BS, leveraging the local spatial information
of hyperspectral images combined with a packing method.
This approach incorporates local spatial smoothing to enhance
algorithmic performance. Additionally, Yang et al. [41] devel-
oped a dual deep reinforcement learning network (DDQN)
for BS, integrating a novel reward mechanism to circumvent
local optima. The challenges in labeling samples for super-
vised algorithms have spurred the development of numerous
semi-supervised techniques. A noteworthy example is the
model by Feng et al. [42], which employs a semi-supervised
deep reinforcement learning framework. This model con-
structs an evaluation network that reinforces the intraclass
compactness of samples, trained through random sampling.
Unsupervised algorithms, a significant subset, are further
divided into sorting-based and clustering-based methods. Two
classic examples include the information scatter-based sorting

algorithm by Chang and Wang [43], along with a clustering
algorithm by Martinez-Uso et al. [44] that utilizes a hier-
archical clustering structure to optimize intracluster variance
and intercluster variance. The field of deep learning has seen
groundbreaking advances in BS methodologies for hyperspec-
tral data analysis. A significant contribution in this domain is
the dual global-local attention network by He et al. [45]. This
network adeptly incorporates spatial and spectral information
across both global and local dimensions, enabling a nuanced
reweighting of hyperspectral data, which facilitates the identi-
fication and selection of the most pertinent bands. Li et al. [46]
proposed a nonlocal band attention network, by extracting
the remote attention to get the remote relationship between
bands, and then realizing stable and effective BS. Moreover,
Zhang et al. [47] proposed a dual graph self-representation
method that integrates superpixel segmentation and the
l2,1-norm to achieve robust unsupervised BS. Such innova-
tions highlight the dynamic evolution of hyperspectral data
processing, wherein deep learning techniques are increasingly
crucial.

Despite these advancements, a notable gap remains: most
existing BS methods predominantly cater to visible-near-
infrared hyperspectral data, with limited applicability to
thermal infrared hyperspectral data. Addressing this gap,
the objective of this article is to advance a graph neural
network-based approach for BS in thermal infrared hyper-
spectral data specifically for LST retrieval. Our proposed
method is a supervised algorithm, utilizing LST as a label to
select the most representative band subset. It involves mapping
hyperspectral data onto a graph structure, followed by a FE
module that extracts radiance and brightness temperature fea-
tures across the spectrum. A subsequent band weighting (BW)
module assigns differential weights to each band, culminating
in the selection of an optimal subset based on these weights
for effective LST retrieval.

This article is organized as follows. Section I introduces the
background of the BS study. The proposed model is delineated
in Section II. In Section III, the utilized experimental data are
described. Section IV conducts tests on the proposed model,
presenting experimental results and facilitating a discussion
thereof. Section V applies the algorithm to IASI data. The
conclusion is shown in the final section.

II. METHODOLOGY

The proposed method consists of four parts: the FE module
based on graph neural networks, the BW module based on
multiscale convolutions, the BS module based on the weight-
ing factors obtained above, and the temperature regression
(TR) module based on feedforward neural network, as shown
in Fig. 1. Specifically, the input thermal infrared hyperspectral
data is first processed by the FE module, which performs
operations on the input thermal infrared hyperspectral data in
the spectral domain and extracts the key features. Then, all of
the thermal infrared hyperspectral bands are weighted by the
BW module, and the weighted bands are selected via the BS
module. Finally, the selected thermal infrared hyperspectral
bands are used to retrieve LST, and the discrepancy between
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Fig. 1. Diagram of the proposed neural network architecture.

the temperature retrieval results and the actual values is incor-
porated as part of the loss to train the entire network. On the
whole, the FE module is responsible for the extraction of band
features, then the BW module weights each input thermal
infrared hyperspectral band, the BS module is in charge of
selecting the subset of bands based on the weights, and the
TR module takes charge of calculating the LST through the
selected bands.

A. Graph Data Structure of Hyperspectral Data

The graph is a special type of topological structure com-
posed of nodes and edges, which can be represented as G =

(V, A, E), where V is the set of nodes V = {v1, v2, . . . , vn}

and E is the set of edges of the graph. In graph data structures,
if two nodes satisfy a certain condition, it can be considered
that the two nodes are connected by an edge, i.e., there
exists an edge between two nodes vi ∈ V, v j ∈ V only if
(vi , v j ) ∈ E . Additionally, the adjacency matrix A of the graph
is a square matrix of size |V | × |V |, where the value of Ai, j

indicates whether there is an edge between nodes i and j .
It can be expressed as

Ai, j =

{
0,

(
vi , v j

)
/∈ E, vi , v j ∈ V

1,
(
vi , v j

)
∈ E, vi , v j ∈ V .

(1)

In the absence of dependable measured datasets, this study
employed simulated thermal infrared hyperspectral data to
train the model. This data type encompasses spectral dimen-
sion information, characterized by substantial similarity and
redundancy across the spectral bands. These traits present
notable challenges when transforming hyperspectral data into
a graph-based structure.

Graph attention network (GAT), a specialized variant of
graph neural networks, demonstrates unique strengths in
adaptive feature aggregation, flexible structure modeling, and

efficient information integration. By dynamically weighting
each node through attention mechanisms, GAT can concentrate
on pivotal features, thus enhancing the detection of interband
dependencies and the flow of information. A critical aspect of
employing GAT involves determining node connectivity and
constructing an adjacency matrix in a judicious manner. How-
ever, the process of formulating this matrix encounters several
constraints. Primarily, the variations between bands in thermal
infrared hyperspectral data are often subtle, complicating the
distinction process. Moreover, as the quantity of spectral bands
escalates, the computational complexity associated with the
adjacency matrix increases quadratically. Notably, the architec-
ture of the adjacency matrix exerts a direct influence on node
aggregation within the GAT, subsequently impacting model
performance. These factors collectively introduce significant
challenges in establishing an appropriate threshold for adja-
cency in this research context.

In this investigation, a novel approach is devised to trans-
form thermal infrared hyperspectral data into a graph topology,
taking into account both the radiance and wavelength attributes
of the spectral bands. Conceptually, this method treats each
spectral band as a node within the graph structure. The
presence of an edge between any two nodes is contingent on
a specific relationship between their corresponding bands.

The adjacency matrix, a key component in graph-based
analysis, is constructed using a formula that integrates both
radiance and wavelength differences between bands. This
formula can be expressed as

Ai, j =

{
1, |vi − v j |

/
vi < 0.1% ∩ |si − s j | < 0.5

0, otherwise
(2)

where |vi − v j | represents the radiance difference between
bands i and j , and |si−s j | represents the wavelength difference
between bands i and j . Specifically, if the radiance relative
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Fig. 2. Structure of the FE module.

difference between two nodes is less than 0.1% and the
wavelength difference between the two bands represented by
the nodes is less than 0.5 µm, there is an edge between the
corresponding nodes.

This methodology facilitates enhanced aggregation of infor-
mation across nodes, leveraging the nuances of both radiance
and wavelength disparities to form a more informative and
representative graph structure of thermal infrared hyperspectral
data. The threshold values for radiance and wavelength differ-
ences are chosen to ensure meaningful connectivity within the
graph, which is instrumental in capturing the intrinsic rela-
tionships and characteristics in thermal infrared hyperspectral
bands.

B. FE Module

To address the challenge of redundancy among spectral
bands in thermal infrared hyperspectral data and to efficiently
extract temperature-related features, this section introduces a
custom-designed FE module, as illustrated in Fig. 2. This
module is architected to process and refine thermal infrared
hyperspectral data, ultimately enhancing the extraction of
meaningful temperature features.

The FE module initiates its process by receiving a set of
thermal infrared hyperspectral data, represented as a tensor
of dimensions (b, 1760), where b denotes the batch size and
1760 represents the total spectral bands of the IASI sensor
within the wavelength range of 760 to 1200 cm−1. This input
undergoes sequential processing through two critical branches:
graph attention brightness temperature mapping and radiance
graph attention. These branches are interconnected via residual
connections, which are instrumental in preserving information
and facilitating learning. The output from this module is a
feature tensor with dimensions (b, 3, 1760).

Delving into specifics, the FE module executes two pivotal
operations on the input radiance features. The first operation
employs a multihead graph attention layer. This layer is
adept at calculating the similarity between spectral bands,
subsequently performing an aggregation of features. This
approach allows for an understanding and representation of

the relationships between different spectral bands. The syn-
chronous operation involves mapping the radiance features
and converting these mapped multidimensional features into
brightness temperature. This conversion leverages the Planck
blackbody formula, a fundamental concept in physics describ-
ing the relationship between an object’s temperature and the
radiation it emits. By applying this formula, the module
transforms the radiance features into temperature information,
representing them in a higher-dimensional space.

This two-stream approach, combining graph-based attention
mechanisms with physical principles like the Planck formula,
enables the model to not only compute temperature features
in a more nuanced, higher-dimensional space but also to
extract features that have a direct physical significance. This
methodology is devised to ensure that the extracted features
are not only relevant for the specific task, but are also grounded
in the fundamental physical properties of the data, enhancing
the robustness and applicability of the model in practical
scenarios.

The multihead graph attention layer can be considered as
mapping the input node features into multiple dimensions and
then calculating self-attention for each dimension. Features of
all nodes within the input are

h⃗ = {h⃗1, h⃗2, . . . , h⃗N }, h⃗i ∈ RF (3)

where N is the number of nodes, h⃗i is the feature of the node i ,
and RF signifies an F-dimension real number space.

After the calculation of the graph attention layer, the output
features are

h⃗′ = {h⃗′
1, h⃗′

2, . . . , h⃗′
N }, h⃗′

i ∈ RF ′

. (4)

Specifically, the attention layer begins by calculating the
relevance between the node i and its neighboring nodes, then
normalizing it according to the significance of different neigh-
boring nodes, and finally weights and sums them to calculate
the relevance of the node. The process can be represented as

ei j = a(Wh⃗i , Wh⃗ j ) (5)

where, ei j represents the relevance between the node i and
its neighboring node j ; W is the weight matrix, which is a
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shared parameter that maps the features to a multidimensional
space for a more comprehensive FE; a is a feedforward neural
network that maps the high-dimensional features to a real
number in the final calculation.

In order to make it easier to compare the attention coef-
ficients of each neighboring node of node i , the attention
coefficients need to be normalized, represented as

αi j = softmax j (ei j ) =
exp(ei j )∑

k∈Ni
exp(eik)

(6)

where αi j represents the weight of node j among all the
neighbor nodes of node i.

After obtaining the weights of neighbor nodes, the infor-
mation of node i can be aggregated by means of weighted
summation, which can be expressed as

h⃗
′

i = σ

∑
j∈Ni

αi j Wh⃗ j

. (7)

Finally, the self-attention results for multiple dimensions are
aggregated using the following formula:

h⃗′
i (K ) =

K∣∣∣∣∣∣
k=1

σ

∑
j∈Ni

αk
i j W

k h⃗ j

 (8)

where K represents the number of attention heads in the
multihead attention mechanism.

Within the FE module, a distinctive aspect of the pro-
cessing routine includes the implementation of a specialized
attention mechanism, particularly geared toward temperature-
related features. This is in addition to the standard multihead
graph attention computation. The uniqueness of this approach
lies in its focus on the intrinsic physical properties of the
hyperspectral data, namely radiance and wavelength, which
are inherent attributes of each node in the graph structure.

For each node, the features comprise the radiance and
the corresponding wavelength that the node represents. Uti-
lizing these features, the module calculates the brightness
temperature of each node. This calculation is grounded in the
Planck blackbody radiation formula, a fundamental principle
in physics that describes the relationship between the temper-
ature of an object and the spectrum of radiation it emits.

The Planck formula is expressed as follows:

Mλ (T ) =
2πhc

λ 5

1

e
hc

λkT − 1
(9)

where h represents the Planck constant and has a value
of approximately 6.626 × 10−34 (J·s); k represents the
Boltzmann’s constant and has a value of approximately
1.3806 × 10−23 (J/K); c represents the speed of light and has
a value of approximately 2.998 × 108 (m/s); λ represents the
wavelength in meters; and T represents the thermodynamic
temperature in Kelvin.

By applying the Planck formula, the FE module is capa-
ble of transforming the radiance and wavelength data into
a meaningful measure of brightness temperature. This pro-
cess not only enhances the module’s ability to focus on
temperature-related features but also embeds a layer of

physical significance into the computational framework. The
attention constraint, tailored for temperature-related features,
ensures that the module effectively processes the most relevant
information for temperature estimation, thus enhancing the
accuracy and robustness of the FE process in the context
of hyperspectral data analysis. In summary, the FE module
will calculate the node’s radiance and brightness temperature
features respectively, thus realizing the complete FE, and the
FE module is shown in Fig. 2.

C. BW Module

The process commences with the linear mapping of graph
data structure nodes into a 4-D tensor format, yielding a
tensor of size (b, 6, 42, 42), where b indicates the batch
size. Subsequently, three distinct convolutional operations are
applied to this tensor data

1) Utilization of a large convolutional kernel, sized
10 × 10, to process the data. This results in an output
tensor with dimensions (b, 6, 32, 32).

2) Implementation of a large-scale dilated convolution,
characterized by a kernel size of 4 and a dilation rate of
3. The output from this convolution also maintains the
shape (b, 6, 32, 32).

3) Execution of four consecutive convolutions using a
smaller kernel, sized 4 × 4. During these convolutions,
the tanh activation function is employed. The final output
from this series of convolutions preserves the shape
(b, 6, 32, 32).

Post convolutional encoding with these three kernel sizes,
the data undergoes a convergence and subsequent redecoding
phase. The decoding segment is composed of a 1-D convolu-
tion followed by a twofold up-sampling process.

Overall, the BW module facilitates an encoding-decoding
process, as shown in Fig. 3. Throughout the encoding phase,
the module extracts varying scales of band features. This
extraction is crucial, as it enables the module to integrate
information from both adjacent and distant bands, ensuring
a comprehensive representation of the spectral data. By lever-
aging diverse convolutional scales and techniques, the BW
module plays a pivotal role in enhancing the fidelity and
utility of the processed thermal infrared hyperspectral data for
subsequent analysis stages.

D. BS Module

Following the comprehensive extraction and analysis of
spectral band features by the FE and BW modules, the next
critical phase is the BS module. This module’s primary func-
tion is to select spectral bands based on the weights assigned
by the BW module. This selection is pivotal for optimizing
the LST retrieval process with a reduced number of bands,
thereby enhancing efficiency.

The BW module’s output is a matrix w with dimensions
(b, 1760), where 1760 corresponds to the weighted values of
all spectral bands, as determined by the encoding and decoding
processes of the BW module. The BS module’s task is to select
a subset of these spectral bands, ensuring that the most relevant
and informative bands are utilized for LST retrieval.
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Fig. 3. Structure of the BW module.

The selection process is governed by the following formula:

x = Sn(X + w × ∂) − Sn(w × ∂), w × ∂ ≫ X (10)

where X represents the input raw data, Sn denotes the oper-
ation of sorting and selecting the top n weights, and ∂

is a sufficiently large coefficient such that w × ∂ ≫ X.
The purpose of this is to maintain the completeness of the
computation graph by sorting and selecting the original data
X based on the weights in a basic matrix operation.

Overall, the BS module aims to choose n spectral bands
from the entirety of available data, and the final output format
of the BS module is (b, n).

E. TR Module

The TR module in the system serves the function of
computing LST based on the radiances of the selected spectral
bands. This module employs the calculated LST to generate a
loss value by comparing it with the true temperature values.
This loss is then utilized to facilitate the backpropagation of
gradients within the neural network, which is essential for the
iterative refinement and optimization of the model.

Specifically, the TR module consists of a four-layer feedfor-
ward neural network, with input data in the format of (b, n)

and output in the format of (b, 1).
In addition, the loss function assesses the error between

the model’s predicted outputs and the actual values. Utilizing
the backpropagation algorithm, it updates the model param-
eters to enhance model performance. To make the selected
combination of spectral bands more representative while also
targeting the LST retrieval problem, a loss function is designed
as follows:

Loss = MSE(y′, y) + 1/Var(x) (11)

where MSE(y′, y) represents the mean squared error between
the output value of the feedforward neural network and the
true value, and Var(x) represents the variance of the input
of the feedforward neural network. The purpose of this is to
add a constraint on the information entropy to increase the
representativeness of the selected spectral bands based on the
LST retrieval. During training, the focus is mainly on the value
of MSE(y′, y), with Var(x) being a secondary component of
the loss.

In summary, the loss function of the model is designed to
minimize the difference between the predicted and actual LST,
while also incorporating an information entropy constraint.
This approach ensures that the selected spectral bands are
highly representative and closely relevant to the LST retrieval

Algorithm 1 BT-GAT Method
Input:
Thermal Infrared Hyperspectral Data: X
The number of selected bands n
Initialize:
Construct an adjacency matrix A according to (2) and repre-
sent X as a graph data structure G.
Output: Band index
1 While Model not converging
Do
2 The feature vector h⃗ of each node v is mapped and

converted into brightness temperature according to (9).
3 Use (3)-(8) to aggregate the features of each node v to

obtain the vector h⃗′.
4 Calculate the weight matrix w of all bands through multi-

scale convolution.
5 Select n bands with greater weights according to (10).
6 LST is calculated via a feedforward neural network using

a selected subset of bands.
7 Calculate Loss according to (11).
8 Update model parameters.

End
9 Select a subset of bands with greater weight.

problem. This method enhances prediction accuracy and guar-
antees that the model focuses on the most crucial features for
LST prediction, leading to precise and efficient performance.
The overall algorithmic workflow is shown in Algorithm.

III. DATA

A. Dataset Creating

On the basis of radiative transfer theory, under atmospheric
conditions without clouds, the radiance obtained through the
thermal infrared sensor onboard the satellite can be expressed
as shown below

B(T ) = εB(Ts)τ + R↑

atm + (1 − ε)R↓

atmτ (12)

where B is the Planck function, T is the brightness temperature
at the top of the atmosphere observed by the sensor, B(Ts)

represents the Planck radiance of an object at a temperature Ts ,
ε is the surface emissivity, τ represents the atmospheric trans-
mittance, and R↑

atm and R↓

atm represent atmospheric upwelling
and downwelling radiation, respectively.

In the context of the atmospheric thermal radiation transfer
equation’s theoretical framework, the radiance for a given
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Fig. 4. Relationship between WVC and LST of atmospheric profiles.

spectral band can be deduced through knowledge of several
key parameters: LST, surface emissivity, atmospheric trans-
mittance, atmospheric upwelling radiation, and atmospheric
downwelling radiation, which can be simulated by MODerate
resolution atmospheric TRANsmission (MODTRAN). In this
part, a comprehensive dataset comprising 65 100 vertical
observation conditions was generated, utilizing 62 represen-
tative land cover spectra and 1050 clear-sky atmospheric
profiles. Each of these conditions encapsulates radiance infor-
mation for 1760 spectral bands, covering a wavelength range
of 760 to 1200 cm−1. The dataset was subjected to a random
shuffle and subsequently partitioned into a training set (80%)
and a test set (20%). The subsequent sections will provide
more detailed insights into the land cover spectra and atmo-
spheric profiles utilized in this part.

B. ECMWF Reanalysis v5 (ERA5)

ERA5, the fifth-generation atmospheric reanalysis product
developed by the European Centre for Medium-Range Weather
Forecasts (ECMWF), provides a comprehensive depiction of
global climate conditions, spanning from January 1940 to the
present. This reanalysis is a product of the Copernicus Climate
Change Service (C3S) initiative at ECMWF.

For this part, data were specifically sourced from the
Asian region, confined within the geographical bounds of
75◦–120◦E longitudes and 24◦–48◦N latitudes, during the year
2021, with a variety of surface types, including urban areas,
forests, lakes, deserts, and grasslands. The LST within this
region was segmented into seven distinct intervals, ranging
from 250 to 320 K. These intervals were established with
increments of 10 K. From each temperature interval, 150 atmo-
spheric profiles were randomly selected, culminating in a total
of 1050 atmospheric profiles. Fig. 4 illustrates the relationship
between WVC and LST of the selected atmospheric profile,
where the x-axis represents the LST and the y-axis represents
the WVC, respectively.

C. JHU Land Cover Spectral Database

This research utilized spectral data from the JHU Spectral
Library, an extensive database established by Johns Hopkins

Fig. 5. Emissivity profiles for 11 common feature types.

University in the United States, with a wide array of spec-
tra, including rocks, minerals, vegetation, and soils. A total
of 62 characteristic spectra from 11 classical features were
selected for analysis, with emissivity curves plotted from ran-
domly chosen samples of these 11 feature classes, as depicted
in Fig. 5. This approach allows for a comprehensive under-
standing of the emissive properties of various objects, which
is crucial for accurate remote sensing and environmental
analysis.

The emissivity of different feature types can be very similar
in one band and very different in another, as shown in Fig. 5,
underscoring the criticality of BS, with the goal of discerning
and selecting a band subset that capture the most comprehen-
sive emissivity information, thereby maximizing the efficacy
and accuracy of spectral analysis.

D. Data Analysis

To illustrate the redundancy of the thermal infrared hyper-
spectral data, 20 bands were selected from the database,
where Pearson coefficients were calculated utilizing average
and random sampling methods, as shown in Fig. 6.

It can be seen that there is a high correlation and redundancy
between the thermal infrared hyperspectral bands, and increas-
ing the number of bands does not necessarily bring a better
result for LST retrieval. The reason for this phenomenon may
be that the radiance received by the sensor is coupled by a vari-
ety of factors, such as LST, emissivity, atmospheric absorption,
etc., and the variations of these factors are not significant or
even highly correlated in different thermal infrared channels.
Under ideal conditions, the most representative subset of bands
should exhibit the lowest possible correlation to reduce the
coupling of information, so as to enhance the efficiency of the
target parameter of LST, which is also the ultimate goal of BS.

IV. RESULTS AND ANALYSIS

A. Comparison Experiments

To prove the effectiveness of this method, several sets
of comparison experiments are utilized for validation. LST
retrieval result is influenced by three factors: the number
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Fig. 6. Schematic of the Pearson coefficients for each band. (a) Correlation coefficients for a random sample of 20 selected bands and (b) correlation
coefficients for an average sample of 20 selected bands.

TABLE I
COMPARISON OF RMSE (K) FOR DIFFERENT BS METHODS IN GRU NETWORK-BASED LST ESTIMATION

of the chosen bands, the index of the chosen bands, and
the model used for LST retrieval. The three sets of com-
parative experiments correspond to LST retrieval using three
models: GRU, LSTM, and DNN. This eliminates the uncer-
tainty caused by different LST retrieval models. Where GRU
and LSTM are branches of recurrent neural networks, with
Ye et al. [48] having previously employed LSTM for LST
retrieval. The deep neural network (DNN), evolving from
multilayer perceptron, represents a relatively simple network
structure, and Wang et al. [35] have utilized DNN for tem-
perature retrieval and conducted a detailed analysis thereof.
Moreover, we compared the effects of different BS methods
and different selected band numbers on LST retrieval in each
experiment. The compared BS methods are BS_Net_FC [49],
DARecnet [50], Genetic Algorithm (GA) [51], Successive
Projection Algorithm (SPA) [52], and Uniform Selection
Algorithm (UBS) [53]. Here, BS_Net_FC and DARecnet are
unsupervised BS algorithms based on deep learning, whereas
GA and SPA are traditional machine learning algorithms.

As demonstrated in Tables I–III, employing the BT-GAT
method proposed in this study has an obvious advantage in
the case of LST retrieval using the GRU network. When

utilizing the LSTM network for LST retrieval, optimal out-
comes are obtained via the implementation of the BT-GAT
method for BS, and the RMSE of LST retrieval can reach
0.42 K. When utilizing the DNN network for LST retrieval,
the advantage of the BT-GAT method is still large, but not
as obvious as in Tables I and II, which may be due to the
relatively poor stability of the DNN network. Overall, the
method proposed in this study is superior to other methods
in most cases. Furthermore, it is noteworthy that utilizing
the DNN model for extracting LST results in a noticeable
increase in the RMSE of the LST obtained as the number of
bands rises. However, when the LSTs are retrieved using the
LSTM model, the augmentation of bands exhibits a nominal
effect on the retrieval results. It is imperative to note that
this observation does not diminish the inherent utility of the
BS process. Beyond its impact on computational efficiency,
the specifically selected bands significantly impact the results.
Consequently, under the condition of selecting an identical
number of bands, different BS methods persist in exerting
discernible effects on the resultant calculation results. For this
result, our conjecture is that for the problem of retrieving
LST from thermal infrared hyperspectral data, there is indeed
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TABLE II
COMPARISON OF RMSE (K) FOR DIFFERENT BS METHODS IN LSTM NETWORK-BASED LST ESTIMATION

TABLE III
COMPARISON OF RMSE (K) FOR DIFFERENT BS METHODS IN DNN NETWORK-BASED LST ESTIMATION

a Hughes phenomenon. However, different neural networks
perform differently in combating problems such as overfitting
or gradient explosion, and the Hughes phenomenon is not
observed to the same extent. For example, the LSTM neural
network, which has memory units and gating mechanisms
to better handle sequential data, exhibits more robustness in
the problem of LST retrieval compared to the DNN neural
network, so the Hughes phenomenon is not notably significant
in this scenario.

Furthermore, to more intuitively demonstrate the differences
in the selection methods across various spectral bands, Fig. 7
depicts the bands chosen by different algorithms when the
number of selected bands is set to 40.

Additionally, the computational efficiency of the BT-GAT
model was assessed. The network training was conducted
on a system with an Intel Xeon1 Platinum 8255C CPU and
RTX-3090 GPU. During the training phase, the entire model
was segmented into three distinct sections. The first section
encompasses the FE and BW modules, employing the Adam
optimizer with a learning rate of 10−6. The second section
comprises the BS module without trainable parameters. The

1Registered trademark.

Fig. 7. Band locations obtained by different methods.

third section, incorporating the TR module, also utilizes the
Adam optimizer, with a learning rate of 10−3. Notably, the
network parameters of both the first and third sections are
updated concurrently following the computation of loss. In the
training process, with a batch size of 32, computing one
epoch took approximately 75 s. The complete training process,
spanning 20 epochs, required about 25 min in total.

B. Ablation Experiments

1) Performance Comparison of Different Ablation Methods:
To assess the efficacy of the brightness temperature physical
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TABLE IV
DIFFERENT ABLATION EXPERIMENT METHODS COMPARISON OF RMSE (K) IN GRU NETWORK-BASED LST ESTIMATION

TABLE V
DIFFERENT ABLATION EXPERIMENT METHODS COMPARISON OF RMSE (K) IN LSTM NETWORK-BASED LST ESTIMATION

constraints and the multiscale convolution with large kernels
in BS proposed in this study, ablation experiments were con-
ducted, as illustrated in Tables IV and V. In this experiment,
the following methods were tested: using a standard GAT
instead of brightness temperature-constrained GAT, substitut-
ing standard convolution kernels for multiscale convolution
with large kernels, and the BT-GAT algorithm proposed in
this study.

In the ablation study, the BT-GAT algorithm achieved the
best results, as shown in Tables IV and V. Specifically, during
the ablation process under the physical constraint of brightness
temperature, all experiments exhibited varying degrees of
degradation. This phenomenon validates the efficacy of the
brightness temperature physical constraint, which can better
represent the relevant information of LST, thereby enhancing
algorithm performance. Furthermore, the experiments indi-
cated that replacing multiscale convolution with large kernels
by ordinary convolution led to an increase in the RMSE of LST
retrieval, suggesting that incorporating large-scale convolution

is beneficial for the model performance. Its unique large-scale
receptive field can aggregate band information from greater
distances.

Overall, the proposed method BT-GAT outperforms its
ablated versions; each component of the model plays a
crucial role in enhancing the model’s ability to accurately
retrieve LST. The results affirm the benefit of integrating
domain-specific knowledge through physical constraints.

2) Performance Comparison of Different Graph Neural Net-
works: An experiment was designed to demonstrate that the
performance of using GAT surpasses that of other graph neural
networks. In the experiment, all GAT layers in the BT-GAT
algorithm were individually replaced with GNN layers and
GCN layers for BS. The LST retrieval results using the
selected bands are presented in Fig. 8.

In this experiment, the performance of GAT was found to
be almost comprehensively superior to that of GNN and GCN.
The reason for this outcome may be due to the ability of GAT
to assign different weights to each node through the attention
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Fig. 8. Comparison of different graph neural networks for BS. (a) RMSE (K) for LST retrieval using GRU network. (b) RMSE (K) for LST retrieval using
LSTM network.

TABLE VI
COMPARISON OF RMSE (K) FOR DIFFERENT BS METHODS IN PRACTICAL APPLICATIONS

mechanism. This adaptive weight allocation makes GAT more
flexible and effective in capturing important relationships
between nodes, which, for the BS, means that GAT can better
understand and extract band information most relevant to the
specific task.

C. Sensitivity Analysis

Instrument noise, arising from factors like body vibration,
calibration error, and dark current during sensor operation,
can introduce minor inaccuracies in sensor imaging [54].
To evaluate the effects of the instrumental noise on the
BS method proposed in our study, a Gaussian noise with a
standard deviation of 0.02 W·m−2

·µm−1
·sr−1 was introduced

to all the data. This noise-altered data was then used for BS,
and subsequently, for obtaining the LST using a subset of the
selected bands. The results of these experiments are presented
in Fig. 9.

As observed in Fig. 9, incorporating Gaussian noise at a
level of 0.02 W·m−2

·µm−1
·sr−1 leads to a marginal increase in

the RMSE of LST retrieval when using the GRU or DNN algo-
rithms. However, the RMSE of LST retrieval remains relatively
stable with the LSTM algorithm. This suggests that while
noisy data can impact the stability of LST retrieval results,
the LSTM algorithm, in particular, demonstrates resilience and
continues to perform effectively. In light of these findings,
the LSTM algorithm will be the preferred choice for LST
retrieval in subsequent experiments based on the demonstrated
robustness in handling noisy data, the crucial attribute for
accurate LST retrieval.

V. APPLICATION

To enhance the model’s practical applicability, IASI thermal
infrared hyperspectral data is utilized for LST retrieving and

Fig. 9. RMSE for LST retrieval using additive noise data.

validating. The experiment utilized the IASI L1C radiance and
IASI L02 temperature products specifically focusing on data
collected in January 2022 from image elements observed at
zenith angles less than 20◦. The chosen experimental region
covered an area spanning from 24◦ to 48◦N and 75◦ to
120◦E in Southeast Asia. Employing the BT-GAT and other
BS models, 40 bands were selected to execute LST retrieval
using the LSTM network. The retrieved LST values were then
compared with the IASI L02 product.

To assess the influence of different BS methods on LST
retrieval, various BS strategies were applied in practical
settings, with the findings detailed in Table VI. The implemen-
tation of BT-GAT for data dimensionality reduction followed
by LST retrieval resulted in a best RMSE of 1.85 K, whereas
alternative approaches yielded RMSEs ranging from 1.99 to
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Fig. 10. Comparison of LST retrieval results using the IASI L1C product with the IASI L02 product: (a) shows the absolute error of the LST retrieval results
using the IASI L1C product versus the IASI L02 product and (b) shows the scatter plot of the LST retrieval results using the IASI L1C product versus the
IASI L02 product.

2.27 K. A further visualization analysis of the BT-GAT out-
comes, as shown in Fig. 10, demonstrates that the absolute
error distribution of the LST retrieval closely resembles a
normal distribution, characterized by a mean of 0.7 K and
a standard deviation of 1.85 K. The experimental data suggest
a close proximity between the retrieved LST values and the
actual LST measurements, which substantiates the efficacy
of the BT-GAT BS approach. This validation offers valuable
insights for the development of hyperspectral-based LST inver-
sion algorithms.

VI. CONCLUSION AND DISCUSSION

A methodological framework utilizing a specialized graph
data structure for efficient hyperspectral data mapping is pro-
posed in this article. This structure enables a detailed analysis
of band correlations by examining features of adjacent nodes,
thereby providing insights into spectral relationships. A note-
worthy aspect of our approach is the integration of object
brightness temperature, a significant physical parameter crucial
for extracting relevant hyperspectral data features. Addition-
ally, the proposed model incorporates a series of multisize
convolutional kernels, which are designed to assign weights to
different spectral bands, facilitating a refined approach to BS.
This aspect of the model is pivotal in addressing challenges
associated with LST retrieval. Compared to existing BS meth-
ods, the proposed approach shows improved performance in
LST retrieval. This is demonstrated by achieving the RMSE of
1.85 K against the IASI temperature product. This achievement
underscores the accuracy and practical applicability of the
proposed method in environmental and climatic studies. The
contributions of the proposed framework could be summarized
as follows:

1) This algorithm addresses the gap in methodologies
for the thermal infrared hyperspectral BS using deep
learning models, providing a reference for subse-
quent research in thermal infrared hyperspectral remote
sensing.

2) The manifestation of the Hughes phenomenon in the
experimental results emphasizes that indiscriminate aug-
mentation of spectral bands does not necessarily yield
improved performance in the field of LST retrieval,
thereby fortifying the substantive significance of the BS
methodology proposed in this article.

3) During the implementation of the graph attention neu-
ral network, physical constraints related to blackbody
radiation are integrated, alongside the utilization of
multiscale convolution with large kernels, effectively
enhancing the model’s performance compared to other
network structures. Additionally, the algorithm has been
cross-validated with IASI-related products, confirming
its effectiveness and practical value.

The proposed method, characterized by the integration of
physical quantities pertinent to LST retrieval, exhibits sig-
nificant utility in the domain of LST retrieval. However,
this specialized focus may inadvertently result in diminished
performance when applied to other areas outside of this
specific field. Recognizing this limitation, future work will
be directed toward developing more generalized algorithms.
These algorithms will aim to maintain the efficacy in LST
retrieval while broadening the scope of applicability, thereby
enhancing versatility and performance across a wider range of
applications. This endeavor will involve balancing the speci-
ficity required for accurate LST retrieval with the flexibility
needed for broader utility.
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