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Abstract— For scenes with complex backgrounds and weak
anomalies, how to effectively distinguish anomaly targets from
the background is the key to perform hyperspectral image (HSI)
anomaly detection (AD). Data decomposition-based methods have
been widely studied due to their potential in separating back-
ground and anomaly components. However, due to its unclean
background extraction and sensitivity to noise, it has an adverse
effect on the detection of anomaly targets. In addition, a large
amount of spectral data can lead to an increase in computation
during data decomposition. To address this issue, we propose
an AD method based on a feedback band group and variation
low-rank (LR) sparse model (FBGVLRS-AD). First, we employ a
uniform band selection (BS) strategy to partition spectral bands
and perform data decomposition on the selected band group,
to separate LR and sparse components. This decomposition
on the band group can reduce computational time and mitigate
the interference from spectral variability. Second, to preserve
the integrity of abnormal target spectra during the background
extraction process, the L2,1 norm is employed for joint correlated
total variation (TV) to extract the desired anomalous targets.
Then, utilizing the detection information from the existing band
groups, a feedback-driven iterative framework has been designed
to consider the consistency and complementarity in AD across
band groups. This framework facilitates the extraction of sparse
components in the subsequent band groups and reinforces the
anomalous elements. Iteratively addressing these subproblems on
band groups helps prevent the loss of useful spectral informa-
tion, maintaining sufficient anomaly information while reducing
interference from redundant information and spectral variations.
Finally, the proposed FBGVLR-AD is optimally solved by the
augmented Lagrange multiplier (ALM) method. A comparison
with state-of-the-art anomaly detectors on multiple data validates
the competitiveness of the proposed method for AD tasks.

Index Terms— Anomaly detection (AD), correlated total varia-
tion (CTV), group sparsity, hyperspectral image (HSI) denoising.
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I. INTRODUCTION

THE rapid development of high spectral resolution in
hyperspectral images (HSIs) has increasingly positioned

it as a vital component in Earth observation missions. It has a
wide range of applications in areas such as land cover classi-
fication [1], [2], target detection [3], and super-resolution [4].
Anomaly detection (AD) has the advantage of being able to
detect potential targets without any prior knowledge, and it
has highly practical applications in military reconnaissance,
mineral exploration, and food quality detection [5], [6]. Given
the absence of prior knowledge about anomalies, research
on AD primarily focuses on distinguishing anomaly targets
from the background by analyzing the disparities in spectral
characteristics between the anomaly targets and the back-
ground [7]. From the perspective of the core principles of AD
methods, AD techniques for HS data can be categorized into
model-driven-based methods [8], [9] and data-driven-based
methods [10], [11].

The strong feature expression capability of data-driven
methods has shown promising results in many fields [12], [13],
[14]. In HSI AD, due to the limited number of pixels occupied
by anomalous targets, they cannot dominate the convergence
of the reconstruction model. This results in poor reconstruction
of anomalous targets, whereas background samples can be
reconstructed effectively. In other words, the background typi-
cally exhibits smaller reconstruction errors, whereas anomalies
tend to manifest larger ones. Following this idea, many
deep-learning (DL) AD methods have been developed. For
example, Lei et al. [15] introduced an anomaly detector relying
on spectral learning and discriminative reconstruction. This
method constrains the model to exclusively reconstruct the
background by acquiring the spectral information of the input
data. To further exploit the spatial information of HSI, robust
graph autoencoders (RGAEs) [16] introduced graph regular-
ization based on superpixel segmentation, aiming to achieve
the preservation of geometric structures and local consistency
in HSI. DL methods possess powerful learning capabilities;
however, due to the absence of any prior knowledge in AD,
its training samples may be prone to errors. In cases where
the learning samples are incorrect, it can lead to erroneous
learning directions. The lack of prior knowledge hinders DL
methods from fully leveraging their advantages [17]. To bet-
ter separate background component and anomalous target,
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an unsupervised discriminative reconstruction constrained gen-
erative adversarial network was introduced [18]. This network
compels the model to focus on the superior reconstruction
of the background. In addition, some studies [19], [20] uti-
lized weak supervision and semi-supervision to select pure
background samples for training. They leverage well-trained
networks to achieve promising detection results. However,
these methods require training specific detectors for each
HSI. Furthermore, while autoencoder (AE) network-based AD
methods exhibit excellent performance, their effectiveness is
often hampered by a lack of prior information. To enhance
the reconstruction of background features, guided autoencoder
(GAED) [21] reduced the reconstruction of anomalous targets
by incorporating guiding modules into the network. In a
similar vein, another method [22] utilized a fully convolutional
AE for background reconstruction. This method employed
an adaptive weighted loss function to suppress abnormal
reconstruction, with the advantage of dynamically updating
weight coefficients based on reconstruction errors. This elim-
inates the need for manual parameter tuning. However, it is
worth noting that retraining becomes necessary when applying
this method to different testing scenarios. Recently, some
data-driven studies incorporating low-rank (LR) priors were
proposed [11], [23], [24]. For example, Wang et al. [11]
introduced a method based on deep LR priors, achieving
promising detection results. In this method, the model-driven
LR prior and the data-driven fully convolutional AE are jointly
modeled as an energy minimization problem.

Model-driven-based methods rely on mathematical descrip-
tions of models and typically exhibit strong predictive
capabilities. The classical Reed-Xiaoli (RX) algorithm, con-
sidered one of the representative algorithms of the statistical
AD baseline, was proposed by Reed and Xu [25]. This detector
assumes that the probability density function of the back-
ground obeys a multivariate Gaussian distribution and does
not require a priori knowledge of the target spectral. Instead,
it only computes the global mean and background covari-
ance matrix to evaluate anomaly pixels. Subsequently, some
variations of the RX algorithm have been reported for AD,
including improved KRX [26], local RX [27], and subspace
RX [28], among others. Chang and Chiang [29] simplified the
operation of RXD without affecting the detection efficiency
and proposed R-based correlation matrix AD (RAD), which
has become one of the more widely used AD algorithms.

In addition to RX and its variants, various AD algorithms
based on data decomposition have been proposed [30], [31].
In recent years, owing to the high correlation in HSI, the
LR prior has been widely considered in various tasks [32],
such as super-resolution [33], object detection [34], tensor
completion [35], and denoising [36]. Similarly, in the task of
HSI AD, considering that background information is included
in the lowest rank part of HS pixels, Guo et al. [30]
developed a hierarchical mutually incoherent induced dis-
crimination (AHMID) learning strategy to model background,
anomalies, and noise. Li et al. [37] proposed utilizing tensor
decomposition instead of matrix decomposition. The HSI
is decomposed into background tensor and anomaly tensor.
Anomalies are characterized with the help of spatial group

sparse prior on the anomaly tensor (PTA). In [38], the
fractional-order Fourier transform combined with LR sparse
matrix factorization was proposed for AD. It is the result of the
integration of feature extraction and background purification
(IFEBP). Chang et al. [39] jointly employed LR matrices
and sparse matrices to achieve background suppression and
target detection within the different subspaces they form.
They proposed orthogonal subspace projection-based Go-
Decomposition (OSP-GoDec) for AD, and this method has
shown promising results. Chen et al. [40] developed an AD
method called component decomposition. In [40], HS data
were represented as a linear orthogonal decomposition of three
components: principal component, independent component,
and noise component, and performs well for HS data AD.

In the real world, the acquired HS data are usually disturbed
by noise due to the limitations of the imaging system and
device conditions [41], [42]. Spectral signature corrupted by
noise can also affect the improvement of subsequent AD
performance [43], [44]. Therefore, there are studies focused
on addressing HS data contaminated by noise. They perform
denoising operations on noise-contaminated HS data and then
perform AD on the recovered data to reduce the impact
of noise on anomaly targets. For example, in [45], an AD
method was proposed for handling noise-contaminated HS
data using spectral unmixing-based dictionary construction
and LR matrix decomposition. Zhuang et al. [46] introduced
an AD algorithm for noise-contaminated HS data. They utilize
LR representation to promote self-similarity among nonlocal
similar patches and, through collaborative sparsity, preserve
rare pixels to achieve denoising and detection in HS data.
Taking into account spatial factors and noise interference,
Feng et al. [47] combined superpixel segmentation with
total variation (TV) model to better separate the anomaly
pixels from HS data by maintaining the local structure of
the background pixels. To provide a more comprehensive
characterization of the rich spatial and spectral features in HS
data, Wang et al. [48] proposed an LR matrix decomposition
method with Schatten 1/2 quasi-norm and noise removal, for
AD in HS data. However, more regularization implies that a
greater number of parameters need to be adjusted to balance
the importance of each term. Recently, the correlated TV
(CTV) [49] was proposed for HSI restoration tasks. This
method utilized nuclear norm to encode strong correlations
among gradient images, aiming to recover the LR and local
smooth components of the data. It is evident that this primarily
considers components occupying the major part of the HSI and
does not give more attention to anomaly targets that distin-
guished from noise. Abnormal targets are typically composed
of a few pixels known as “rare pixels,” especially weak targets.
However, LR approximations cannot effectively approximate
the spectral of these rare pixels, and even the spectral of
abnormal targets may be corrupted by denoising [46]. These
abnormal spectral features consist of rare pixels that might
be crucial targets in subsequent applications, such as AD
tasks. Unlike the HSI restoration task [36], [41], AD tasks
pay more attention to regions or pixels that differ from the
image background mode. These pixels typically occur with
a relatively low probability and are composed of a smaller
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number of pixels. Considering that abnormal targets exhibit
a highly sparse distribution in the spatial dimension but still
maintain density in the spectral dimension. To enable the
model to more fully retain information about abnormal pixels,
we employ a mixed norm that satisfies column-wise sparsity
to characterize the sparse component S (which is not well
represented in CTV). This is advantageous for preserving the
anomaly targets of interest and protecting them from being
corrupted during denoising processing.

Furthermore, due to the information-rich nature of HS data,
simultaneously decomposing the acquired full-band HS data
not only increases computational time but can also lead to sig-
nificant mutual “interference,” thereby affecting the efficiency
and accuracy of AD tasks [50]. In order to effectively improve
the computational accuracy of AD and reduce the computa-
tion, Wang et al. [51] utilized principal component analysis
(PCA) to perform preprocessing operations on the observed
HS data and proposed a PCA-based tensor LR and sparse
representation model. This type of preprocessing by feature
extraction can effectively reduce the computation of the model
and retain a certain amount of information for subsequent
tasks. However, PCA is more concerned with the retention of
LR information, so the resulting bands are not conducive to
anomaly processing. In addition, AD based on band selection
(BS) has been successively proposed to reduce the redundancy
interference and computationally heavy problem of HS data.
For instance, Shang et al. [52] introduced a residual-driven
BS method to enhance the capability of a band subset for
anomaly recognition, to cope with the challenge of lacking
prior information about anomalies. Xie et al. [53] proposed a
spectral–spatial AD method based on a specific subset of bands
by utilizing the underlying physical features favoring the AD
of HS data to constrain the unsupervised network. It selects
a band subset in an unsupervised manner and combines the
suppression background of simultaneous iterations of spatial
and spectral detectors. However, AD is unsupervised, it is
challenging to provide a guiding criterion for BS in such cases.
Therefore, how to reduce the computational time of HS data
decomposition without losing anomaly information is an issue
that needs to be further explored.

In this study, we propose an AD method based on feedback
band group and variation LR sparse model (FBGVLRS-AD).
The proposed FBGVLRS-AD method is developed from data
decomposition and can be effective in significantly reducing
computational time for decomposition. First, in contrast to
previous AD methods based on the combination of LR and
TV models as two separate regularization terms, we utilize the
nuclear norm on the gradient map to simultaneously encode
LR and local smoothness properties, thus avoiding the need for
additional parameter tuning. Furthermore, taking into account
that anomaly targets spectral is distinguished from random dis-
tributed sparse noise, it exhibits sparsity in the spatial domain
but remains dense in the spectral domain. Therefore, we con-
strain them by jointly considering the spectral–spatial sparsity,
to preserve the spectral characteristics of abnormal target pix-
els during the background extraction process. Second, directly
decomposing full-band HS data imposes a heavier computa-
tional burden. Unlike the preprocessing methods of PCA and

BS, we do not selectively retain or discard any information or
bands. Instead, we use BS [uniform BS (UBS)] to partition
the computation of large-scale full-band data into small-scale
computations on multiple band groups using uniform UBS
and then iteratively process these subproblems. This approach
enables the preservation of sufficient information for subse-
quent processing, mitigating limitations on AD performance
resulting from the loss of valuable spectral information due
to a lack of prior knowledge. In addition, decomposing for
the band groups also reduces the computational load. Fur-
thermore, high band redundancy can increase the difficulty of
distinguishing between N and S components, thereby affecting
the accuracy of S extraction. This division process helps
reduce interference from nonanomalous components. Third,
these band groups contain abundant information, comprising
interesting anomalous targets and background components
that require suppression. In HS data, information occupying
large areas is typically deemed nonanomalous targets and
exhibits piecewise smooth characteristics. The CTV model
can enhance the continuity of these regions, facilitating the
separation of nonanomalous components, and thereby preserv-
ing the anomaly targets of interest. Fourth, there is a degree
of consistency and complementarity in the AD performance
among different band groups. We have designed an iterative
framework that prompts us to utilize existing knowledge of the
detection for band groups to guide and facilitate the separation
of the sparse component S for subsequent band groups, thereby
improving the performance of AD. Compared to existing data
decomposition-based AD methods, the contributions of our
presented method can be summarized as follows.

1) This article introduces a band group-based iterative
feedback framework by leveraging the consistency and
complementarity of AD results across various band
groups. In this framework, the computation of large-
scale full-band data is divided into multiple small-scale
computations on band groups. The extracted information
about anomalous targets serves as feedback to guide
the decomposition of subsequent band groups, aiming
to better preserve and highlight anomalous targets. The
proposed framework accelerates detection speed while
avoiding issues related to the loss of anomaly informa-
tion caused by spectral BS.

2) The CTV model is employed in data decomposition
AD tasks, incorporating a combined L2,1 norm. The
CTV model considers both the low rankness and local
smoothness of nonanomalous components in HS data,
eliminating the need for adjusting multiple parameters.
The L2,1 norm is employed to preserve the spectral
integrity of anomalous targets during the background
extraction process.

3) An iterative optimization algorithm based on augmented
Lagrange multiplier (ALM) is designed to derive and
solve the proposed FBGVLRS-AD method. Experimen-
tal results on multiple real datasets demonstrate the
effectiveness of the proposed method, particularly for
weak anomalous target features.

The remaining sections of this article are organized as
follows. Section II provides an overview of existing methods,
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including LR and sparse model, and TV model-based AD.
Section III offers a detailed introduction to the proposed
AD method based on feedback band group and variation LR
sparse model. Section IV covers the experimental results and
performance analysis. Finally, the conclusions drawn from
the study and the outline of future work are presented in
Section V.

II. RELATION METHOD

A. LRaSMD for AD

X ∈ Rh×w×b is a 3-D HS data cube with a spatial size
of h × w and comprising b bands. Here, we unfold X into
X ∈ Rb×n , where n = h × w represents the total number
of pixels in the HS data. Background pixels in HS data
exhibit a high correlation and can be linearly represented by
other background pixels. This can be expressed through the
following matrix factorization model:

X = L + S. (1)

Equation (1) implies that the original data X can be regarded
as a combination of an LR matrix L and a sparse matrix S.
Equation (1) has numerous feasible solutions, and the common
way is to impose constraints on the background component L
and sparse component S. Building upon the high correlation
of HS data, a common way is to apply an LR constraint
to the background component L, which requires suppression.
The anomalous targets that need to be detected typically
reside in S, and spatially, they often exhibit characteristics
of sparse distribution. Therefore, (1) can be extended to the
minimization form in the following equation:

min
L,S

rank(L) + β∥S∥0

s.t. X = L + S (2)

Considering that the anomalous signatures are different from
noise, they are still dense in spectral dimension. This implies
that S is column-wise sparse. Based on the above analysis, the
following models can be derived:

min
L,S

rank(L) + β∥S∥2,1

s.t. X = L + S. (3)

In this context, β is a tradeoff coefficient greater than 0,
intended to balance the importance of background and sparse
components. rank(.) and ∥·∥2,1 denote the rank function and
a mixed norm that promotes column sparsity in the matrix S
[51], respectively. The definition of ∥·∥2,1 is as follows:

∥S∥2,1 =

rc∑
j=1

√√√√ b∑
i=1

S2
i, j . (4)

However, (3) is nonconvex and NP-hard. A commonly
employed approach is to replace the nonconvex rank function
with a convex function approximating it, known as the nuclear
norm. The equation is then reformulated as follows:

min
L,S

∥L∥∗ + β∥S∥2,1

s.t. X = L + S (5)

where ∥·∥∗ represents the matrix nuclear norm, solved using
the singular value thresholding method.

B. TV-Based for AD

Owing to the piecewise smooth characteristics of the TV
model, it can effectively portray the structural features of HS
data. The TV model has been employed in AD methods that
take spatial relationships into account, thereby enhancing the
extraction of background component

min
Z,S

1
2

∥∥(Z − Ẑ
)
W
∥∥2

F + λ1TV(Z) + λ2∥S∥2,1

s.t. X = DZ + S (6)

where Ẑ is the guide matrix containing local spatial infor-
mation, W is a weighted diagonal matrix based on anomaly
probability, DZ represents the background component, and D
and Z denote the pretrained dictionary and its corresponding
representation coefficients, respectively. In (6), the TV term
is used to enhance the correlation between pixels in order
to approximate the background component. Simultaneously,
it also has a noise-suppressing effect. Furthermore, due to the
weaker correlation between anomalies and surrounding pixels,
utilizing the TV model can effectively isolate anomalous
pixels, which is advantageous for background extraction.

In addition, considering the potential influence of Gaussian
noise contamination or model errors on HS data [54], the
model in (1) can be further extended as

X = L + S + N (7)

where N ∈ Rb×n is additive Gaussian noise or modeling error.

III. FEEDBACK BAND GROUP AND VARIATION
LR SPARSE AD

In this article, we achieve this by partitioning the full-band
data into multiple band groups and performing a data decom-
posing on band groups, which can efficiently reduce the
computational burden of the decomposition process and avoid
the increase in residual information after extracting the LR
part, caused by the spectral variability of full-band data,
especially when the rank is low. The increase in residual
information leads to a greater challenge in distinguishing
between the N and S. In addition, by jointly considering the
CTV LR property and sparse norm, we effectively separate
the nonanomalous LR component and retain the anomaly
targets of interest. Finally, leveraging obtained anomaly knowl-
edge in a feedback loop facilitates subsequent decomposition
processes, achieving rapid decomposition while enhancing
the performance of AD task. Fig. 1 shows the schematic
of the proposed FBGVLRS-AD method. The FBGVLR-AD
algorithm consists of three components: 1) data decomposition
on a band group aims to reduce the computation time for
data decomposition while minimizing interference from redun-
dant information and spectral variations; 2) local smoothing
and LR, and jointly spectral–spatial sparsity constraints, are
employed to extract interesting anomalous targets on band
groups; and 3) iterative feedback mechanism, utilizing an
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Fig. 1. Flowchart of the proposed FBGVLRS for HSI AD. (a) Decomposed for band group. (b) LR and sparse. (c) Iterative feedback mechanism.

existing anomaly target detection information-guided subse-
quent band group decomposition. A more detailed description
will be provided in the following.

A. LRaSMD for Band Group

UBS is one of the simplest but quite usable BS methods,
which does not require any prior knowledge or BS crite-
ria. Here, we utilize UBS for band grouping. To effectively
suppress the interference of background information, LR and
sparse representations are applied to the band group. The
benefits of data decomposition for a few bands are twofold:
1) it can improve the efficiency of decomposition and 2) the
effect of spectral variability increases when the number of
bands increases, and constraining it with a smaller rank leads
to an increase in the remaining information after extracting
the LR component. This results in increased interference from
noise on the interesting anomaly targets and makes it more dif-
ficult to distinguish S and N, ultimately reducing the accuracy
of extracting S. Decomposition for a few bands can reduce
the interference of nonanomaly components. The effective
separation of the sparse component S from the background
component L is crucial for reducing false alarm rates in AD
on S [55]

min
LB,SB

∥LB∥∗ + β∥SB∥2,1

s.t. XB = LB + SB + NB (8)

where B = {b1, b2, . . . , bi } represents a band group selected
via UBS.

In the implementation of the proposed AD method, the
key parameter j used for band group selection should be
predetermined. According to [39] and [56], j is considered the
rank of the sparse matrix S, and its value can be calculated
using MX-SVD [57]. The virtual dimension (VD) [58] can be
used to estimate p, for representing the number of total base
vectors of the LR matrix L and the sparse matrix S, i.e., the
rank p of L + S is specified by the VD, and p = m + j . This
means that the value of m can be obtained by m = p − j .

It should be noted that both HFC [59], [60] and NWHFC [58],
[59] can be used to estimate the value of VD. Here, the VD
values estimated by these two methods are denoted as VDHFC

and VDNWHFC.

B. Piecewise Smoothing and LR Priors by CTV
Regularization

Anomalies are usually composed of a few pixels, and large
areas of information in HS data are generally considered
nonanomalous and they are spatially continuous. The method
based on LR and sparse preserves the main information
of the data by minimizing the kernel norm but does not
consider the spatial factors of the image, resulting in imperfect
extraction of the nonanomalous LR component. This will
lead to two situations: 1) some components that should be
anomalous are incorrectly identified as background, reducing
the detection rate of AD or 2) some background components
are incorrectly recognized as anomalous, leading to an increase
in false alarm rates. The TV regularization term can effectively
characterize the piecewise smoothness properties that have
been successfully applied in many fields [47], [49], [61],
[62] and achieved remarkable results. However, more regular
terms imply that more parameters need to be tuned. Therefore,
in this article, we take advantage of the ability of the CTV
model to encode both the LR and local smoothing properties
of the gradient map and introduce it into the AD task to
promote the separation of the nonanomalous LR components.
At the same time, incorporating a mixed norm that satisfies the
column-wise sparsity to characterize the sparse component S,
to preserve the anomalous targets of interest. Finally, the
proposed objective model is formulated as

min
LB,SB

3∑
i=1

∥∇i LB∥∗ + β∥SB∥2,1

s.t. XB = LB + SB + NB, i = 1, 2, 3 (9)

where ∇1, ∇2, and ∇3 represent the first-order difference
operators in the horizontal, vertical, and spectral directions,
respectively.
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In order to make the objective function separable, an auxil-
iary variable J is introduced, and with J = ∇LB, the first term∑3

i=1 ∥∇i LB∥∗ in the objective function (9) can be rewritten
as
∑3

i=1 ∥Ji∥∗. Without loss of generality, X, L, S, and N
are substituted for XB, LB, SB, and NB to derive the solution
process. Based on this, the question posed can be formulated
as

min
X,S

3∑
i=1

∥Ji∥∗ + β∥S∥2,1

s.t.X=L+S+N
Ji=∇i (L) (10)

and using the ALM method to solve (10), it can be rewritten
to minimize the following augmented Lagrange function:

min
L,S

ℓ(L, S, J, 0i )

= min
L,J,S,0

3∑
i=1

(
∥Ji∥∗ +

λ

2
∥∇i L − J∥

2
F+ < 0i , ∇i L − Ji >

)
+ < 0, X − L − S > +

λ

2
∥X − L − S∥

2
F + β∥S∥2,1 (11)

where λ represents the penalty parameter, 0 is the Lagrange
multiplier, and the inner product of the two matrices is
represented by < ·, · >. A typical way to solve (11) is to
alternately optimize one variable, while the other variables
remain fixed. In detail, in the t + 1 iteration, the update of
each variable is

Jt+1
i = arg min

rank(Ji )≤r
ℓ
(
J, Lt , St , 0t)

Lt+1
= arg min

L
ℓ
(
Jt+1, L, St , 0t)

St+1
= arg min

S
ℓ
(
Jt+1, Lt+1, S, 0t)

0t+1
= 0t

+ λ
(
X − Lt+1

− St+1). (12)

By dividing (11) into three major subproblems in (12), based
on these subproblems, the following equation can be derived.

1) The update of subproblem J can be obtained by solving
the following equation [63], [64]:

Jt+1
i = arg min

rank(Ji )≤r
ℓ
(
J, Lt , St , 0t)

= arg min
rank(Ji )≤r

∥Ji∥∗ +
λ

2
∥∇i L − J∥

2
F+ < 0i , ∇i L − Ji >

= arg min
rank(Ji )≤r

∥Ji∥∗ +
λ

2

∥∥∥∥∇i L − Ji +
0i

λ

∥∥∥∥2

F
. (13)

The solution to problem (13) can be expressed as{
Jt+1

i = US1/λ(6)VT

U6VT
= svd(∇i Lt

+ 0i/λ,′ econ′)
(14)

2) Then, the subproblem S is updated as follows:

St+1
= arg min

S
ℓ
(
Jt+1, Lt+1, S, 0t)

= arg min
S

β∥S∥2,1+ < 0, X − L − S >

+
λ

2
∥X − L − S∥

2
F

= arg min
S

µ∥S∥2,1 +
λ

2

∥∥∥∥X − L − S +
04

λ

∥∥∥∥2

F
.

(15)

Equation (15) can be solved with the help of the follow-
ing equation [65]:

[S]i,: =


∥∥[E]i,:

∥∥
2 − β2∥∥[E]i,:
∥∥

2

[E]i,:, β2 <
∥∥[E]i,:

∥∥
2

0, otherwise
(16)

where E = X − L +
04
λ

and β2 = µ/λ.
3) The subproblem related to L can be formulated as

follows:

Lt+1
= arg min

L
ℓ
(
Jt+1

i , L, St , 0t)
= arg min

L
∥Ji∥∗ +

λ

2
∥∇i L − J∥

2
F+ < 0i , ∇i L − Ji >

+ < 0, X − L − S > +
λ

2
∥X − L − S∥

2
F

= arg min
L

3∑
i=1

λ

2

∥∥∥∥∇i L − Jt+1
i +

0t
i

λ

∥∥∥∥2

F

+
λ

2

∥∥∥∥X − L − St+1
+

0t
4

λ

∥∥∥∥2

F
. (17)

Equation (17) can be updated by the following formula:(
λI + λ

3∑
i=1

∇
T
i ∇i

)
L

= λ
(
X − St+1)

+ 0t
4 + λ

3∑
i=1

∇
T
i

(
Jt+1

i

)
− ∇

T
n

(
0t

n

)
(18)

where ∇
T
i denotes the transpose operator of ∇i (·). ∇

T
i ∇i

can be diagonalized by a 3-D fast Fourier transform
(FFT) matrix. A closed solution for Lt+1 can be derived
by Fourier transforming both sides of (18) and using the
convolution theorem

H =

3∑
i=1

F(Dn)
∗
⊙ F

(
fold

(
µJt+1

i − 0t
i

))
Tx = |F(D1)|

2
+ |F(D2)|

2
+ |F(D3)|

2

Lt+1
= F−1

(
F
(
fold

(
µX − λSt+1

+ 0t
4

))
+ H

λ(1 + Tx )

)
(19)

where ⊙ and |·|
2 in (19) are element-wise multiplication

and square operations, respectively, and F(·) denotes the
Fourier transform.

4) Finally, the update of the Lagrange multiplier can be
expressed in the following equation:

0t+1
i = 0t

i + λ
(
∇i Lt+1

− Jt+1
i

)
0t+1

4 = 0t
4 + λ

(
X − Lt+1

− St+1)
λ = λρ (20)

where ρ denotes a constant, which is actually greater
than 1.
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C. Iterative Feedback Mechanism

Although data decomposition based on band group B can
reduce the calculation workload during the decomposition
process, UBS is not a BS method for anomaly targets, which
will limit the performance of AD to a certain extent. The
guidance of prior information is more conducive to improving
AD performance. To solve this problem, we introduce the idea
of iterative feedback into the proposed efficient decomposition
model. Inspired by [6], anomaly detectors typically produce
only a single AD map, unable to provide sufficient spatial
and spectral information. In order to utilize the information
of anomalous targets reflected in the AD map, FGmap is
defined. Specifically, the AD map is thresholded by Otsu [66]
to obtain the binary map Bmap. In FGmap, the original AD
map information is retained according to Bmap to guide the
separation of the sparse part, and the background part is set
to 0. Thus, the FGmap is defined as follows:

FGmap(k+1)
=

{
FGmap(k)

r,c = 0 if Bmap(k)
r,c = 0

FGmap(k)
r,c = ADmap(k)

r,c if Bmap(k)
r,c = 1.

(21)

Finally, the FGmap is used for feedback information to
guide the next decomposition process, i.e., X(k)

B = X(k−1)
B ∪

FGmap(k), where k denotes the kth iteration. The above
process is executed iteratively until the stopping rule [6] in (22)
is satisfied

TI(k)
=

|Bmap(k)
∩ Bmap(k−1)

|

|Bmap(k) ∪ Bmap(k−1)|
> ϕ. (22)

The band group has been extended according to the feed-
back information of FGmap and iteratively updating the AD
map. At the same time, it avoids the limitations on AD
performance caused by the selected band subset due to the
lack of prior knowledge of anomalies. The proposed method
can make use of the sufficient information contained in
the HS data cube and reduce the computational workload
effectively.

D. Algorithms

Algorithm 1 summarizes the processing of the proposed
FBGVLR-AD. It can be viewed as two stages: the separation
of background and anomalies, and the feedback of the obtained
AD map information. In the first stage, the optimization
process is terminated when the relative error or the maximum
number of iterations is met. Similarly, in the second stage,
the iterative process is stopped when the TI(k) value of two
consecutive Bmaps is greater than a given threshold ϕ or the
iteration maximum number of iterations k is reached.

IV. EXPERIMENT RESULTS AND PERFORMANCE ANALYSIS

A. Real HSI AD Datasets

Five benchmark datasets were used to evaluate the detection
performance of the method proposed and the baseline methods.
In this section, we provide a detailed introduction to the
datasets used.

Algorithm 1 FBGVLR for HSI AD
Input: Observed HSI X ∈ Rh×w×b is unfolded as X ∈ Rn×b,
λ = 1

√
hw, threshold ϕ, and k = 0.

Initialization: �
(k)
X = HSI, L = randn(hw, b/j), S = 0.

1: while 0 ≤ k ≤ maxiter or meet the stop conditions do
2: Select band group: X(k)

B =UBSHSI
3: while 0 ≤ t ≤ maxiter or meet the convergence do
4: Updating Jt via (14)
5: Updating St via (16)
6: Updating Lt via (19)
7: Updating 0t via (20)
8: check the convergence conditions∥∥X − Lt+1

− St+1
∥∥2

F/∥X∥
2
F ≤ τ1,∥∥∇ i Lt+1

− Jt+1
i

∥∥2
F/∥X∥

2
F ≤ τ2, i = 1, 2, 3

9: t = t + 1;
10: end while
11: Implement δRAD

S j

(
rS j

)
on B(k)

S to produce ADmap(k);
12: using Otsu’s to threshold ADmap(k) to produce

Bmap(k);
13: Check the conditions by (22)

TI(k)
=

|Bmap(k)
∩Bmap(k−1)

|

|Bmap(k)∪Bmap(k−1)|
> ϕ

14: Create a foreground map FGmap(k) by

FGmap(k+1)
=

{
FGmap(k)

r,c = 0 if Bmap(k)
r,c = 0

FGmap(k)
r,c = ADmap(k)

r,c if Bmap(k)
r,c = 1

15: k = k + 1;
16: Expand the current data cube by X(k)

B = X(k−1)
B ∪

FGmap(k)

17: end while
Output: Anomaly detection map

1) HYDICE Panel Scene: The first dataset was collected
by the hyperspectral digital imagery collection experiment
(HYDICE) sensor in 1995. The scene was captured at an
altitude of 10 000 ft with a ground sampling distance of
approximately 1.56 m. It has been extensively studied in vari-
ous literature [67], [68]. The data dimension is 64 × 64 × 169.
The scene includes 15 square panels with three different sizes:
3 × 3 m, 2× 2 m, and 1 × 1 m. Among them, each panel in the
first column of rows 2–5 contains two panel pixels highlighted
in red, while the remaining 11 panels contain one red panel
pixel. Therefore, there are a total of 19 red panel pixels
in this scene. Their precise spatial locations are marked in
Fig. 2(b), where yellow pixels represent panel pixels blended
with the background. The pseudocolored image, ground truth,
and spectral features of this scene are shown in Fig. 2(a)–(c).

2) HYDICE Urban Scene: The second dataset used in the
experiment was also collected by the HYDICE sensor. The
original scene has a size of 307 × 307 pixels, and for
the purpose of AD studies, an 80 × 100 region is selected. This
scene mainly consists of highways, rooftops, vehicles, and
factories, with vehicles marked as anomaly targets, totaling
21 anomaly pixels and 188 spectral bands. Fig. 3(a) displays

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on March 01,2024 at 04:58:09 UTC from IEEE Xplore.  Restrictions apply. 



5508919 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 2. Pseudocolored image, ground truth, and spectral features of HYDICE15-panel scene. (a) HYDICE15-panel scene (band 59). (b) Ground-truth map
of 19R panel pixels. (c) Ground-truth map of 19R panel pixels.

Fig. 3. Pseudocolor images, ground-truth maps, and spectral signature of four experimental datasets. (a) HYDICE Urban (R-42, G-33, and B-19).
(b) ABU-beach3 (R-58, G-46, and B-32). (c) Pavia Center (R-56, G-33, and B-22). (d) ABU-beach2 (R-26, G-12, B-8).

the pseudocolored image, ground truth, and spectral signature
map corresponding to this dataset.

3) Airport-Beach-Urban (ABU)-Beach3 Scene: The third
dataset was captured by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor, containing 188 spectral bands
and comprising 100 × 100 pixels. Among these pixels, 11 are
considered anomaly targets. This dataset is commonly used in
AD studies to validate the performance [69]. The correspond-
ing pseudocolored image, ground truth, and spectral signature
are shown in Fig. 3(b).

4) Pavia Center Scene: The fourth dataset was obtained
using the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor while flying over the city of Pavia [70]. These
HS data have 1096 × 1096 pixels with a spatial resolution of
1.3 m and retain spectral information from 102 bands. For
the AD task, a subscene of size 150 × 150 pixels is used,
where anomalies mainly consist of vehicles on bridges and

bridge supports, totaling 68 anomaly pixels. The correspond-
ing pseudocolored image, ground truth, and spectral signature
of this scene are depicted in Fig. 3(c).

5) ABU-Beach2 Scene: The fifth dataset, also captured by
the AVIRIS sensor, comprises 100 × 100 pixels, with 202 pix-
els considered as anomaly targets. It includes 193 spectral
bands and is commonly used to validate the performance in
AD studies [69]. The corresponding pseudocolored image,
ground truth, and spectral signature of this dataset are shown
in Fig. 3(d).

In addition, the estimates for j across different datasets by
VD and MX-SVD are presented in Table I.

B. Metrics

Given the strengths and weaknesses of different meth-
ods, for a more comprehensive assessment of the proposed
method’s performance, we employ three metrics: 2-D receiver
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Fig. 4. Visualization results of various components for the full bands. (a) X. (b) L. (c) S. (d) N.

Fig. 5. Visualization results of various components for the band group. (a) XB. (b) LB. (c) SB. (d) NB.

TABLE I
ESTIMATED VALUES OF j FOR VARIOUS DATASETS

operating characteristic (ROC) curves, 3-D ROC [71], and
the area under the curve (AUC). These metrics facilitate a
quantitative evaluation of the method. In particular, the 3-D
ROC curve extends the representation capability of ROC by
incorporating a specific threshold τ as the third independent
variable to generate (PD, PF, τ ). Here, we utilize four AUC
values, denoted as AUC(PD, PF), AUC(PD, τ ), AUC(PF, τ ),
and AUCSNPR, to conduct a comprehensive evaluation and
analysis of the experimental results. The 2-D ROC curve is
composed of (PD, PF), (PD, τ ), and (PF, τ ). The AUC value
reflects the area enclosed by the ROC curve and the coordinate
axes. Therefore, larger values of AUC(PD, PF), AUC(PD, τ ),
and AUCSNPR indicate better detection performance, while a
smaller AUCSNPR corresponds to more effective background
suppression.

C. Discussion AD for Full Bands and Band Group

To validate the characterization capabilities of various com-
ponents (L, S, and N) after data decomposition on both the

full bands and band group, in this section, we perform AD on
each component. Figs. 4 and 5 show the visualization results
of various components of the band group with (p, m, j) = (13,
7, 6) and the full bands of HYDICE Panel data, respectively.
Table II and Figs. 6 and 7 present the AUC values and AD
maps obtained for each component.

The visualization results from Figs. 4 and 5 reveal that
decomposition on a band group is more conducive to sep-
arating the sparse components from the background. This
advantage becomes particularly evident in the comparison of
Figs. 4(c) and 5(c). This shows that the decomposition on
a band subset is more conducive to anti-various interfering
components in the AD task.

Based on the detection results of each component, a hor-
izontal comparison in Table II shows that S of band group
demonstrates higher AUC (PD, PF), AUC (PD, τ ), and AUC
SNPR values, as well as lower AUC (PF, τ ). This implies that
decomposition on a band group is more conducive to anomaly
target detection, particularly evident in the improvement of
AUC (PD and PF) value and the reduction of AUC (PF and τ )
value. The AD maps in Figs. 6 and 7 further validate the
above analysis. The AD maps on various components of the
band subset show a cleaner background suppression than that
of the full bands.

These results highlight the advantage of data decomposi-
tion on a band group for distinguishing anomalies from the
background. This is attributed to the spectral variability of
the full-band HS data, which results in increased residual
information after extracting the LR component, especially
when the rank is small. This increased residual information
complicates the differentiation between noise or error N and
sparse S components, affecting the accuracy of S extraction
and ultimately limiting AD performance. From AD compari-
son results of N and S in the band group and the full bands,
S has a higher AUC (PD and PF) and N has a smaller AUC
(PD and PF) in the band group. It shows that decomposition
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TABLE II
AD RESULTS OF VARIOUS COMPONENTS FOR BOTH FULL BANDS AND BAND GROUP

Fig. 6. AD results of different components for the full bands. (a) X. (b) L. (c) S. (d) N.

Fig. 7. AD results of various components for the band group. (a) XB. (b) LB. (c) SB. (d) NB.

on band groups is more conducive to distinguishing N and S.
Therefore, decomposition on a band group emerges as a crucial
strategy for reducing false alarms.

Furthermore, the vertical comparison in Table II indicates
that higher AUC (PD and PF), AUC (PD and τ ), and AUC
SNPR and lower AUC (PF and τ ) values are realized on
sparse space S in both full bands and band group than other
subspaces, which means that sparse space is more conducive
to the capturing of anomaly targets of interest.

Finally, from the third column of the HYDICE Panel
data, the third-column anomalies consist of a red panel
pixel and smaller yellow panel pixels, representing typ-
ical weak anomaly features. The proposed method can
more accurately separate the third-column anomaly signature
[Figs. 5(c) and (c)]. It indicates that the proposed decompo-
sition strategy based on band group can effectively suppress
the background and reduce the impact of spectral variability,
that is, facilitating the extraction of weak anomaly targets.

In addition, we further analyze the computational time for
the decomposition processing on the full bands and the band
group. Table III shows the comparison of the time spent in
the data decomposition processing step for the full bands and
the band group. It can be observed that decomposition on
the band group effectively reduces the computational time,

TABLE III
TIME OF DATA DECOMPOSITION FOR FULL

BANDS AND BAND GROUP (SECOND)

demonstrating the effectiveness of dividing the full bands
into smaller scale band group in improving computational
efficiency.

D. Comparision Methods and Parameter Setting

The proposed method is compared with 12 baseline meth-
ods, including classical RXD [25] and RAD [29], five LR and
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Fig. 8. AD maps of all compared methods for HYDICE Panel data. (a) Ground truth. (b) Proposed- j1. (c) Proposed- j2. (d) RXD. (e) RAD. (f) CTV.
(g) OSP-GoDec- j1. (h) OSP-GoDec- j2. (i) AHMID. (j) PTA. (k) IFEBP. (l) RhyDe. (m) SSIIFD. (n) CRD. (o) RGAE. (p) GAED.

sparse methods [CTV [49], OSP-GoDec [39], RhyDe [46],
IFEBP [38], and AHMID [30]], tensor representation-based
PTA [37], isolation forest-based SSIIFD [72], collaborative
representation-based CRD [73], and two AD methods based
on autoencoder networks (GAED [21] and RGAE [16]).

Among these, RXD is the baseline for AD. The RAD
detector operates in the original data space and is an AD
method based on the correlation matrix R. As a variant of
RAD, OSP-GoDec provides the results for background sup-
pression and anomaly target detection in different subspaces.
Here, in order to compare the AD performance under the
same conditions, both anomaly target detection and back-
ground suppression of OSP-GoDec are performed in sparse
space, that is, the OSP-GoDec detector is δR−AD

S (rS). RhyDe
introduces a denoising and AD framework. A comparison
with RhyDe shows the effectiveness of the proposed method
compared to AD methods that also consider denoising. CTV
is a method for HSI noise removal based on LR and sparse
models, and comparative experiments are performed here by
performing AD on the sparse matrix S decomposed by CTV.
By comparing with CTV, the ability to preserve and extract
anomaly targets can be verified. In addition, the proposed
method compares with other state-of-the-art AD techniques
on different datasets. These methods are based on various
strategies to detecting anomalous targets and have achieved
satisfactory results. For instance, the PTA method is based on
tensor representation. Its considerations include an LR prior
for the background and a spatially sparse prior for anomalies.
Comparing it with the PTA allows for an assessment of the
proposed method’s balanced capabilities in background sup-
pression and anomaly target detection. In CRD, collaborative
representation is applied to AD, and the ability of the proposed
method to express anomalies can be seen by comparison with
CRD. IFEBP combines feature extraction with background
purification, leveraging the capabilities of fractional Fourier
transform in feature extraction and the advantages of LRaSR
in background suppression for performing AD tasks. Com-
parison with it can reflect the anomalies characterization and
background suppression capabilities of the proposed method.
ADMID has devised a hierarchically mutual noninterfering
discriminative learning strategy for modeling three primary
components of the data. The effectiveness of the proposed
method in distinguishing between background and anomalies
can be demonstrated through a comparison with ADMID. The
SSIFD method is founded on the assumption that anomalous

pixels are more readily isolated than background pixels.
It addresses the performance deficiencies of isolation forests in
detecting local anomalies and anomalies in high-dimensional
data. The proposed method’s representation and stability
regarding anomalous targets across different datasets can be
assessed through a comparison with SSIFD. In the RGAE
framework, a robust AE with an L2,1 norm is proposed.
Simultaneously, the method integrates graph regularization
based on superpixel segmentation into the AE to preserve
the geometric structure and local spatial consistency of HSI
simultaneously. The comparison with RGAE can highlight the
anomaly and background separation ability of the proposed
method. To enhance the characterization of background fea-
tures, GAED incorporates a guided module into the network,
thereby diminishing the feature representation of anomalous
targets through feedback information. The guided images
are computed based on the local spatial structure of HSI.
A comparison with GAED can help clarify the advantages
of the feedback-based decomposition strategy of the proposed
method.

It is noteworthy that, to better showcase the performance of
these methods across different datasets and ensure fairness in
comparative experiments, parameters for all baseline methods
are adjusted based on the parameter ranges and default settings
provided in their papers.

Furthermore, since the division of the band group in this
article is based on the rank j of the sparse component to guide
the selection. As shown in Table I, two sets of j values can be
calculated for each data based on the value of p and the MX-
SVD method. Therefore, we denote the experimental results of
all methods involving j values as j1 and j2. In other words, the
proposed method is represented as Proposed- j1 and Proposed-
j2, while OSP-Godec is denoted as OSP-Godec- j1 and OSP-
Godec- j2.

E. Real-Data Experiment Result and Analysis

The detection results of the 11 detectors on five real datasets
are illustrated in Figs. 8–12. For a quantitative study of detec-
tion performance, the ROC curves of different methods are
presented in Figs. 13–17. Four quantitative evaluation metrics
are also provided in Tables IV–VIII. The bold and underlined
indicate the best- and second-best metrics, respectively.

1) HYDICE Panel: In the detection results shown in Fig. 8,
it can be observed that the proposed method is capable of
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Fig. 9. AD maps of all compared methods for HYDICE Urban data. (a) Ground truth. (b) Proposed- j1. (c) Proposed- j2. (d) RXD. (e) RAD. (f) CTV.
(g) OSP-GoDec- j1. (h) OSP-GoDec- j2. (i) AHMID. (j) PTA. (k) IFEBP. (l) RhyDe. (m) SSIIFD. (n) CRD. (o) RGAE. (p) GAED.

Fig. 10. AD maps of all compared methods for ABU-beach3 data. (a) Ground truth. (b) Proposed- j1. (c) Proposed- j2. (d) RXD. (e) RAD. (f) CTV.
(g) OSP-GoDec- j1. (h) OSP-GoDec- j2. (i) AHMID. (j) PTA. (k) IFEBP. (l) RhyDe. (m) SSIIFD. (n) CRD. (o) RGAE. (p) GAED.

Fig. 11. AD maps of all compared methods for Pavia Center data. (a) Ground truth. (b) Proposed- j1. (c) Proposed- j2. (d) RXD. (e) RAD. (f) CTV.
(g) OSP-GoDec- j1. (h) OSP-GoDec- j2. (i) AHMID. (j) PTA. (k) IFEBP. (l) RhyDe. (m) SSIIFD. (n) CRD. (o) RGAE. (p) GAED.

Fig. 12. AD maps of all compared methods for ABU-beach2 data. (a) Ground truth. (b) Proposed- j1. (c) Proposed- j2. (d) RXD. (e) RAD. (f) CTV.
(g) OSP-GoDec- j1. (h) OSP-GoDec- j2. (i) AHMID. (j) PTA. (k) IFEBP. (l) RhyDe. (m) SSIIFD. (n) CRD. (o) RGAE. (p) GAED.

detecting all panel pixels of different sizes, and the background
is also satisfactorily suppressed. The third column of the
detection results for AHMID, PTA, SSIIFD, RGAE, and
GAED exhibits missing anomaly pixels. Although the IFEBP
method is capable of detecting anomaly pixels in the third
column, there is still a small portion where anomaly pixels

are not identified. The background of RhyDe is relatively
cleaner compared to other methods. However, the anomaly
pixels in the third column are also suppressed. This is because
the third column represents a typical weak anomaly target,
contributing less to the image signal. The subspace operation
of RhyDe retains the main components in HS data, which
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Fig. 13. ROC curves of different methods for HYDICE Panel. (a) 2-D ROC curves (PD.). (b) 2-D ROC curves (PD.). (c) 2-D ROC curves (PF.). (d) 3-D
ROC curves (PD.).

Fig. 14. ROC curves of different methods for HYDICE Urban. (a) 2-D ROC curves (PD.). (b) 2-D ROC curves (PD.). (c) 2-D ROC curves (PF.). (d) 3-D
ROC curves (PD.).

Fig. 15. ROC curves of different methods for ABU-beach3. (a) 2-D ROC curves (PD.). (b) 2-D ROC curves (PD.). (c) 2-D ROC curves (PF.). (d) 3-D ROC
curves (PD.).

is disadvantageous for handling weak anomaly targets. RXD,
RAD, CTV, OSP-GoDec, and CRD, compared to several other
compare algorithms, exhibit good detection of anomaly targets
in the third column. However, their suppression effectiveness
on the background is inadequate, leading to some anomaly
targets being submerged within the background.

2) HYDICE Urban: According to Fig. 9, under various
values of (p, m, j), the proposed method detects almost all
anomaly targets. Due to the relatively small size of anomaly
targets, RhyDe does not leverage its advantages for such data.
OSP-GoDec, PTA, and RGAE did not effectively suppress the
background, especially PTA. CRD, CTV, IFEBP, and GAED
had some anomaly targets submerged in background pixels.
SSIIFD performed well on this dataset, but there were still
a few background pixels mistakenly identified as anomaly
targets. On the other hand, RXD and RAD exhibited poor
performance on this dataset. The AHMID method demon-
strated outstanding background suppression, although there
were some missing anomaly targets.

3) ABU-Beach3: From the AD map shown in Fig. 10, it is
evident that RhyDe and AHIMD can only detect a small
portion of anomalies. IFEBP, RXD, CTV, and RAD exhibit

similar situations. CRD almost fails to detect any anomaly
targets. PTA shows poor background suppression in the detec-
tion results, which adversely affects its overall performance.
Similarly, the RGAE exhibits a weak background suppres-
sion capability, leading to a negative impact on detection
performance. In contrast, GAED has a cleaner background,
effectively highlighting anomalous targets. Compared to other
algorithms, OSP-GoDec and SSIIFD have an advantage in the
detection results, although there are minor losses in anomaly
pixels. In contrast, the proposed method can clearly detect
anomalies, and the size and shape of the anomalies closely
resemble the ground truth. This suggests that the consideration
of spatial factors and feedback strategies on band groups in the
proposed method is effective in preserving the characteristics
of anomalous targets.

4) Pavia Center: Fig. 11 displays the experimental results
of different methods on the Pavia Center dataset. As shown
in Fig. 11, PTA captures the majority of anomalies, but it
also exhibits poor background suppression capabilities. The
AD map of CRD contains excessive interference information.
In the results of IFEBP, a small portion of background pixels
is falsely identified as anomalies. Compared to PTA, IFEBP,
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TABLE IV
AUC VALUES OF DIFFERENT METHODS FOR HYDICE PANEL SCENE

RAD, and RXD, OSP-GoDec and AHMID demonstrate bet-
ter background suppression capabilities but still show slight
residue. The detection performance improvement of RGAE
and GAED is compromised due to partial background inter-
ference, thereby affecting the accuracy of the detection results.
In comparison, the detection results of CTV, RhyDe, and the
proposed method exhibit more prominent anomalies and a
cleaner background. This is particularly evident at the edges
of bridges. The primary reason for this is the numerous bands
in HS data, leading to strong “interference” among them. The
edge positions typically involve a mixture of various materials,
resulting in more complex spectral characteristics in the edge
pixels and greater variability. These variations significantly
impact the performance of AD tasks. By decomposing band
groups, the proposed method can mitigate the mutual “interfer-
ence” caused by the full-band HS data. This approach is more
conducive to distinguishing anomalies from the background.

5) ABU-Beach2: Fig. 12 displays the detection results of
different methods on the ABU-beach2 dataset. From the AD
maps in Fig. 12, SSIIFD hardly detects any anomalous targets
and incorrectly labels some background pixels as anomalies.
RXD, RAD, and PTA’s detection results highlight background
pixels more than anomalous ones. CTV exhibits better back-
ground suppression than RXD, RAD, and PTA but falls short
of other comparative methods. CRD and RhyDe detectors
have cleaner backgrounds, but they also suppress most of the
anomalous pixels. Most of the anomaly pixels in the RGAE
and GAED detectors are suppressed, and some backgrounds
are mistakenly detected as anomalies. IFEBP and AHMID
show a small number of anomalies submerged within the
background. In comparison to other methods, OSP-GoDec and
the proposed method demonstrate a better balance between
background suppression and preserving anomalous targets.

The combination of qualitative and quantitative assess-
ments allows for a more comprehensive evaluation of the

TABLE V
AUC VALUES OF DIFFERENT METHODS FOR HYDICE URBAN SCENE

performance of different detectors. Figs. 13–17 depict the
ROC curves of different methods on five datasets, and the
corresponding AUC values are listed in Tables IV–VIII.

6) HYDICE Panel: For the HYDICE panel dataset, com-
bining the quantitative metrics in Fig. 13 and Table IV,
the proposed method demonstrates favorable overall perfor-
mance in both (p, m, j) = (9, 5, 4) and (p, m, j) =

(13, 7, 6). All four AUC values achieve optimal or second-
best levels. It indicates that the proposed method achieves a
well-balanced performance in capturing anomalous targets and
suppressing background. The main reason for this is that the
detection results on different band groups exhibit consistency
and complementarity. The method in this article strengthens
anomalous features in the model by iteratively returning exist-
ing detection knowledge. In addition, the residual information
after extracting the LR part increases due to the spectral
variability of full-band data, especially when the rank is low.
This makes it more challenging to distinguish between the N
and S components. However, decomposing band groups can
effectively alleviate this issue.

7) HYDICE Urban: From the previous data description, the
number of anomalous target pixels on this dataset is relatively
rare and presents an overall sparse characteristic. As indicated
in Fig. 14 and Table V, the proposed method achieves the best
and second-best performance on AUC(PD, PF), AUC(PF, τ ),
and AUCSNPR indexes in the detection of such weak anomaly
targets. In addition, the AUC(PD, τ ) value is surpassed only
by OSP-GoDec, achieving the second-best result. It highlights
the capability of the proposed method to detect weak targets.

8) ABU-Beach3: For the ABU-beach3 dataset, the ROC
curve in Fig. 15 and the AUC values in Table VI indicate
that the proposed method achieves the highest detection rate.
Specifically, in Fig. 15(a), (PD, PF) of the proposed method
tends to lean toward the top-left corner, and correspond-
ingly, (PD, τ ) leans toward the top-right corner in Fig. 15(b).
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Fig. 16. ROC curves of different methods for Pavia Center. (a) 2-D ROC curves (PD.). (b) 2-D ROC curves (PD.). (c) 2-D ROC curves (PF.). (d) 3-D ROC
curves (PD.).

Fig. 17. ROC curves of different methods for ABU-beach2. (a) 2-D ROC curves (PD.). (b) 2-D ROC curves (PD.). (c) 2-D ROC curves (PF.). (d) 3-D ROC
curves (PD.).

TABLE VI
AUC VALUES OF DIFFERENT METHODS FOR ABU-BEACH3 SCENE

It demonstrates that the proposed method possesses a superior
ability to preserve and detect anomalous targets. In addition,
the smaller (PF, τ ) values obtained by the proposed method
at (p, m, j) = (15, 9, 6) reflect its enhanced background
suppression capability.

9) Pavia Center: ROC curves and corresponding AUC
values for different detectors on the Pavia Center dataset are
presented in Fig. 16 and Table VII, respectively. The results
indicate that the proposed method significantly outperforms
other comparative methods in metric AUC(PD, PF). Although

TABLE VII
AUC VALUES OF DIFFERENT METHODS FOR PAVIA CENTER SCENE

it does not exhibit superiority in AUC(PD, τ ), it achieves the
minimum value for AUC(PF , τ ) and secures the third position
for AUCSNPR, thus showcasing good overall performance. Its
observation is further supported by the detection results shown
in Fig. 7.

10) ABU-Beach2: The ROC curve for the AD results on
this dataset is illustrated in Fig. 17. Through the analysis of
the AUC values presented in Table VIII, the proposed method
demonstrates excellent overall performance. With a superior
AUC(PD, PF) value compared to other comparative methods,
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TABLE VIII
AUC VALUES OF DIFFERENT METHODS FOR ABU-BEACH2 SCENE

it stands at an optimal level, indicating that the proposed
method achieves a well-balanced compromise between target
preservation and background anomaly.

Based on the qualitative and quantitative assessment results
mentioned above, the proposed method demonstrates compet-
itive performance compared to all the contrastive algorithms,
especially in the evaluation of the AUC(PD, PF) metric. The
proposed method achieved the highest AUC(PD, PF) values
on all five datasets and the lowest AUC(PF, τ ) values on four
of them. It also achieved the best AUCSNPR and AUC(PD, τ )

scores on three datasets and demonstrated overall good perfor-
mance. These results indicate that the data decomposition on
the band group and iterative feedback strategy of the proposed
method is effective in HS data AD. They not only effectively
reduce computational time and minimize background interfer-
ence but also retain sufficient anomaly information to maintain
the detection capability of weak anomaly features.

F. Convergence, Complexity, and Parameter Analysis

1) Convergence Analysis: The numerical convergence is
studied on five datasets, including HyDICE Panel, HYDICE
Urban, ABU-beach3, Pavia Center, and ABU-beach2. Fig. 18
illustrates the relationship between the relative error in
Algorithm 1 and the number of iterations. It can be observed
that, as the number of iterations increases, the relative error
consistently decreases across the five datasets until the con-
vergence condition is met. This observation suggests that the
proposed FBGVLRS-AD exhibits the expected convergence
behavior.

2) Complexity Analysis: According to the procedure of
Algorithm 1, the computational burden of the proposed
FBGVLRS-AD primarily consists of the following steps. For
J, S, L, and 0, the primary computational complexity for each
iteration includes FFT, SVD, and soft threshold operations.

Fig. 18. Relative errors versus iterations on five datasets.

Fig. 19. AUC(PD, PF) value of five datasets under different parameters c.

Specifically, assuming that the size of the data is M × N ,
the following conditions hold: 1) solving the subproblem (14)
requires three SVD operations, each with a computational
complexity of O(M N 2); 2) the computational complexity
for subproblem (16) is O(M N ); and 3) the L subprob-
lem requires one FFT, with a computational complexity of
O(M N log(M)). Therefore, the total computational complex-
ity of FBGVLR-AD is O(M N log(M) + 3M N 2

+ M N ).
3) Parameter Analysis: In this section, we will explore the

key parameters of the proposed method: the regularization
parameter β in (9), which plays a crucial role in balancing
the LR and sparsity terms closely tied to detection accuracy.
To explore the influence of the regularization parameter on
detection performance, Fig. 19 illustrates the variation in
the AUC(PD, PF) values of the proposed method across five
datasets when β = c/sqrt(h × w), where the value of c
varies within the range {5, 10, 15, 20, 25, 30, 35, 40,
45}. It is evident that, with c fixed at 40, the proposed
method consistently attains favorable values of AUC(PD, PF)

values on the HYDICE Panel and ABU-beach3. When c is
fixed at 15 and 20, the proposed method demonstrates opti-
mal AUC(PD, PF) values on Pavia Center and ABU-beach2,
respectively. The examination of the detection performance of
the proposed method across various datasets indicates that,
in cases where the pixels occupied by anomalous targets are
relatively scarce in the data, a higher value of “c” is necessary
for the proposed method to prevent the suppression of more
anomalous pixels. When there are more pixels associated with
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anomalous targets in the data, a smaller “c” value is more
advantageous for achieving better detection results.

V. CONCLUSION

In this article, we propose an AD method based on feedback
band group and variation LR sparse model. Decomposition on
band group can reduce the interference of nonanomaly com-
ponents and the computation time of decomposition process.
In order to promote the spatial piecewise smoothing of HS data
and resist the interference of noise, CTV is used to constrain
the background components and promote the separation of
the background components and sparse components. At the
same time, in order to preserve the anomaly information
from being weakened, the L2,1 norm is used to constrain the
sparse components. To avoid the limitation of AD performance
caused by the lack of prior knowledge of BS, we design an
iterative feedback strategy to promote the separation of sparse
components from the background and retain sufficient anomaly
information. Finally, an ALM-based optimization solver is
designed for FBGVLRS-AD. Experimental results on multiple
real data verify the effectiveness of the proposed method,
especially for weak anomaly targets.

Furthermore, in future work, we tend to consider further
extending the proposed model to other subtasks, such as
classification and object detection.
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