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Abstract— Hyperspectral image classification (HSIC) models
have made remarkable progress in the last decade. Nevertheless,
the downsized mapping in the convolutional neural network
(CNN) and down-sampled mechanism in the transformer-based
approach amplify the loss of hidden knowledge in the subpixel
that encompasses crucial yet unseen features within a single
pixel. Considering this aspect, the mentioned popular solutions
for HSIC contradict the inherent characteristic of hyperspec-
tral data. To address this issue, we rethink the size factor
in CNN and propose a novel spatial mapping expansion with
spectral compression (SMESC) network for HSIC. Specifically,
the SMESC builds a mapping expansion network to mine
unseen information in subpixels with enlarged feature maps.
A channel modulation residual block (CMRB) is developed to
compress spectral redundancy and promote salient channels with
modulation information. Moreover, we design a multiple-size
training strategy to substitute the traditional multiple feature
extraction (FE) branches and improve the model adaptation
to the different sizes of the testing samples. The extensive
experimental results and analysis of four hyperspectral image
(HSI) datasets demonstrate the superiority of the proposed
architecture compared to other advanced HSIC methods. Our
code will be released at https://github.com/ Chirsycy/SMESC.

Index Terms— Channel modulation residual, hyperspectral
image classification (HSIC), multiple size training, spatial
expansion.

I. INTRODUCTION

YPERSPECTRAL image (HSI) [1], [2], [3] provides

a detailed spectral signature for each terrain category
with hundreds or even thousands of contiguous spectral bands,
which is an irreplaceable technology for ground target recog-
nition due to the distinctive characteristic. HSI classification
(HSIC) that aims to assign a unique label for each pixel in the
HSI is a fundamental task of remote sensing interpretation
research [4], [5], [6]. Nowadays, HSIC is a powerful tool
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for material identification and classification in various fields,
such as precision agriculture, environmental monitoring, and
military surveillance.

Typically, HSIC models are composed of a feature extrac-
tion (FE) network and a classifier. In specific, the FE is
responsible for capturing discriminative features from the
original hyperspectral data, while the classifier assigns labels
in terms of the designed classification criterion. In the last
decade, popular FE models [7], [8], [9], [10], [11], [12]
based on convolutional neural networks (CNNs), recurrent
neural networks (RNNs), autoencoders (AEs), and deep belief
networks (DBNs) have been proposed to extract informative
features from HSIs. Out of these models, the CNN-based
approaches [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23] have gained significant attraction owing to the
capability of simultaneously extracting both spatial and spec-
tral features of HSIs. The architecture in [13] implemented
a combined architecture with 2-D CNN and 3-D CNN to
extract spatial and spectral features for HSIC. Jiang et al. [11]
proposed a method that combined 3-D CNNs and extended
morphological profiles for feature representation for HSI.
Yu et al. [15] extracted HSI features from a CNN and
proposed a locality-sensitive hashing technique to cluster the
feature vectors for classification. Especially, due to the intrinsic
attribute of spectral-spatial integration, spectral and spatial
feature fusion is critical in HSIC. Ma et al. [16] compared the
performance of different feature fusion strategies in HSIC and
mentioned that parallel fusion was effective in few-shot HSIC.
The approach in [17] combines spatial and spectral features on
a multilevel to generate a new vector for HSIC. A multifeature
fusion approach is proposed in [18], which integrates spectral,
spatial, and attention features for HSIC.

Besides, graph convolutional networks (GCNs) have shown
great potential for HSIC due to their ability to handle the
spectral-spatial information of hyperspectral data as a graph
structure. Qin et al. [24] utilized a graph model to represent
the spatial-spectral information of the hyperspectral data and
performed convolutional operations on the graph to extract
spectral-spatial features. Yu et al. [25] proposed a novel
method that combines an edge-inferring graph neural network
with a dynamic task-guided self-diagnosis mechanism for
few-shot HSIC. Wan et al. [26] proposed a dynamic GCN
for HSIC, which models the spectral-spatial information as
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a graph and learns the graph structure dynamically during
training.

Currently, the most advanced research in HSIC is centered
around multisize feature expression [27], [28], [29], multi-
modal feature integration [30], [31], [32], [33], [34], and
attention mechanisms [35], [36], [37], [38], [39], [40], [41],
[42], [43] for FE, resulting in more robust and informative
spatial-spectral space construction. In [27], a multisize fea-
ture fusion network with the GCN is established to enhance
classification accuracy. The joint feature learning network
in [30] explores the feature integration of LiDAR and HSI
data. Besides, several studies have proposed novel attention
networks for HSIC, such as the spatial-spectral attention
network (CDSFT) [35] and the self-pooling attention network
(SPFormer) [36]. These models incorporate attention mecha-
nisms to selectively focus on informative spectral and spatial
features for classification accuracy improvement. Remark-
ably, transformer-based models, such as the hyperspectral
transformer network (HTN) [37] and multibranch attention
transformer networks [38], have also been proposed for
HSIC. These models employ a multihead attention mecha-
nism to capture long-range dependencies between spectral and
spatial features, leading to enhanced performance in classifica-
tion tasks. Although the self-attention mechanism effectively
extracts long-range dependencies and captures global feature
information, the large amount of image tokens leads to severe
computational complexity. One approach to address this issue
is to apply self-attention to images with lower resolutions,
which decreases the complexity caused by self-attention with
fewer tokens and captures the cross-size similarity patterns.

Overall, the existing CNN-based FE model utilizes con-
volution operation to obtain the downsize feature, and the
transformer-based FE model focuses on the long-range infor-
mation expression, which usually employs down-sampling to
decrease the complexity of the self-attention computation.
Obviously, the reduced mapping mechanism in FE does not
obey the unique characteristic of HSI data, that is, spatial
resolution and subpixel. Based on this foundation, in this
article, we present the spatial mapping expansion with spectral
compression (SMESC) network for HSIC, which offers a
novel approach to explicitly extract the concealed features.
Specifically, the SMESC builds a fully transposed convolution
network to extract the spatial features that are hidden in the
subpixels and decrease the spectral redundancy. To compensate
for the limitations that may arise from relying solely on
spatial information, we present a channel modulation residual
mechanism that focuses on spectral information with different
weights. Furthermore, to enhance the adaptability of the HSIC
model, we design a serial training strategy that leverages
multisize samples to address the issue of inconsistent sizes
between training and testing samples.

The main contributions of this article are summarized as
follows.

1) To break the barrier of decreased mapping in FE
against subpixel characteristics, the spatial expansion
and spectral compression network that employs trans-
posed convolution for feature assembling is proposed
for the first attempt to explicitly activate the spatial
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information involved in the subpixel of HSIs. In essence,
SMESC provides a novel feature expression schema
innovatively that abides by the intrinsic characteristic of
HSI and contributes to the spatial expansion architecture
for HSIC conceptually and structurally.

As a valuable addition, we have developed a new
channel modulation residual block (CMRB) that
enhances spectral information refinement by building a
batch-driven modulation way for channel compression.
The creative pattern emphasizes the importance of the
harmonious balance between spatial and spectral fea-
tures, which effectively supplements the deficiency of
spectral expression in SMESC while enlarging spatial
features.

Instead of the parallel fusion with the multisize FE
branches in the training stage, a serial training strategy
is devised to prompt the model adaptability to different
sizes of testing samples. We integrate multiscale infor-
mation during the training process to substitute building
multiscale architecture for spatial information extraction,
which limits the model parameter increase and brings the
insensitivity of the different sizes of the testing samples.

2)

3)

The remainder of this article is organized as follows. The
motivation and the details of the proposed SMESC architecture
are described in Sections II and III, respectively. Section IV
provides the experimental results. Analysis and conclusions
are drawn in Section V.

II. MOTIVATION

Natural images are often characterized by high resolution,
whereas HSIs have unique features, such as low spatial reso-
lution and ubiquitous subpixels. Consequently, the accuracy
of natural image classification (NIC) heavily relies on the
effectiveness of high-resolution FE, whereas the accuracy of
HSIC is significantly influenced by both subpixel and spectral
variability.

Although the CNN-based and transformer-based models
have demonstrated impressive results in natural image anal-
ysis, these models may not be appropriate for analyzing
complex HSI due to inherent subpixel and low spatial res-
olution characteristics. The reason is that CNN-based models
depend on convolution operations to extract features, which
results in the loss of critical spatial information due to the
gradual decrease in spatial size as the network depth increases.
Likewise, the transformer-based approach for HSIC adopts
downsampling to decrease the size to guarantee the complexity
of the self-attention computation of global context information,
which may cause the loss of important subpixel information.
Therefore, it is necessary to develop a new FE mechanism
to substitute for the standard CNN approach that is ade-
quate for subpixels with feature size expansion instead of the
decreased-size embedding maps. Additionally, we also observe
that discrepancies in the sizes of training and test samples have
a detrimental effect on the performance of the HSIC model,
which highlights the significance of the size factor not only in
the training phase but also in the test phase. To sum up, the
spatial size factor plays a vital role in HSIC, it is crucial to
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Fig. 1. Flowchart of the proposed SMESC. The framework is mainly composed of the PB, a SEN with spectral compression, and a GAP layer. On the whole,
the SEN contains the size preservation for stable learning ability and the size expansion module for the refinement of the hidden information. Importantly,
transposed convolutional block (CTB) is the fundamental ingredient of each stage in SEN, RB is responsible for feature skip, and CMRB aims to decrease
spectral redundancy. Finally, the model employs GAP instead of the fully connected layer for the final feature embedding. Notably, during the training phase,

the MST strategy is designed to implement the model optimization iteratively.

rethink the size factor and design the HSIC model customized
with the inherent data characteristics, rather than solely relying
on the NIC models. Besides, the preservation of spatial size,
the adoption of skip connections, the careful balance between
spatial and spectral features, and the training strategy are also
vital considerations in HSIC network design.

ITI. PROPOSED APPROACH

Fig. 1 illustrates the overall flowchart of the proposed
SMESC, which consists of three main blocks: the prepro-
cessing block (PB), the backbone, and the classifier. Initially,
the input samples are processed by the PB block to extract
preliminary features. Afterward, the obtained features are
fed into the backbone of the SMESC network for feature
expansion and refinement, which is accomplished by amplify-
ing spatial information and decreasing spectral redundancies.
The subsequent global average pooling (GAP) layer replaces
the original fully connected layers to generate the category
embedding. Finally, the cross-entropy loss is employed as the
final optimization function in the multiple-size training phase.

Technically, the proposed SMESC implements hidden fea-
ture mining with size preservation and expansion network.
Specifically, the size preservation module (SPM) maintains
the stable learning ability, and the embedding enlargement
is implemented in the expansion network. The CMRB is
presented as a channel attention module to decrease spectral
redundancy. Moreover, the multisize training strategy is put
forward to enhance the size insensitivity and adaptivity of the
HSIC model. Further details of each component are described
in Sections III-A-III-F.

A. Transposed Convolution

Instead of adopting traditional convolution operations

(Conv), the proposed method employs transposed
convolution (ConvT) that is designed to restore
low-dimensional maps to high-dimensional space for feature
expansion.

To illustrate the difference between Conv and ConvT,
we provide the basic calculations for the two operations. With
the stride of 1 and padding of O, (1) and (2) define the Conv
and ConvT calculations, respectively,

14
C(X, Kngsa) = |>_ Xii % ki )

i=1 (p—q+1,p—gq+1)
where
Xlip

X
PP 1(p,p)

is the fed map with the size of p x p, and

kgt e kg (g.9)

is the convolutional kernel with the size of ¢ x ¢, n denotes
the kernel number, s means the striding step, and d is the
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(a)

Fig. 2. Tllustration of (a) Conv operation and (b) ConvT operation.

padding number

CT(X, Kn,q,s,d)

0, 0 0, 0
px2—110, x;; *xkqy Xij * qu, 0
= Xij * ki
i=1 0, Xii * kq1 X * qu, 0
0, 0 0, (p+q—1,p+q—1)

2

where || means matrix addition operation.

Vividly, the illustrations of the Conv and ConvT operations
are demonstrated in Fig. 2. As can be observed, the size of the
fed input feature X withp =3, and K with(n=1,¢g =3, s =
1, d = 0) applying the Conv operation results in a generated
map that is reduced to 2 x 2 as shown in Fig. 2(a). In contrast,
assuming the same input of X and K, the ConvT operation
expands the obtained map to the size of 4 x 4. Besides, the
red region of the right side in Fig. 2(b) is the same feature
as the right side in Fig. 2(a), which means that the ConvT
operation acquires more features than the Conv operation.

Based on the mentioned truth that the ConvT operation
is capable of FE with an enlarged map, we believe that the
ConvT operation has the potential ability to mine the hidden
information of the subpixel of HSI compared to the Conv
operation. In the proposed SMESC model, we construct the FE
for HSIC with size preservation and size expansion module,
which are built upon the ConvT operation.

B. PB Module

In the initial part of SMESC, PB is composed of a 2-D
ConvT layer, batch normalization (BN) layer, ReLu, and a
max-pooling layer. Assuming that x is the input sample, x, is
the output of the PB module. The input feature is polished by
the following equation:

Xp = CT(X, Kn,q,s.d)
xg = max(MP(BN(xy)), 0)

3)
“4)
where BN(-) denotes the BN operation and MP(-) represents
the max-pooling operation with a kernel size of 3 x 3, stride

of 2, and padding of 1. The CT operation in (3) is implemented
with a kernel setting of K (n = 100, g =1, s =1,d = 0).

C. Backbone of the SMESC

1) Size Preservation Module: On the whole, the backbone
network with the input of x, is divided into four cascaded
stages, each with the SPM, which is the crucial component of
the proposed SMESC.

Within each SPM, we adopt the identical mapping mecha-
nism to avoid changing the size of the feature map and reduce
the difficulty of model learning. Conveniently, we record the
block with a ConvT layer, a BN layer, and a ReLu function
as a ConvT block (CTB), which is denoted as the CTB(-)
operation integrally. As shown in Fig. 3(a), the SPM block is
composed of four CTB, where the size of the map and the
number of channels is fixed. Specifically, the feature in the
ith CTB is extracted with the following formula:

x; = CTB; (x;-1) &)

where x; is the output of the ith CTB, i € {l1,2,3,4},
especially, xo denotes the input of the CTB1. In this equation,
the CT operation in CTB is implemented with ¢ = 3,d = 1,
while s and n are varied in different SPM, the specific settings
of the hyperparameters are listed below.

Besides, we enhance feature skipping by incorporating a
residual block (RB) between the first and third CTB within
the SPM module. The extracted feature is obtained using the
following equation:

(6)
)

where x; represents the output of the ith CTB when i equals
3. In (7), the CT operation in CTB is implemented with a
setting of (¢4 = 3, s = 1, and d = 1), and & denotes the
feature addition.

2) Size Expansion Network (SEN): The SPM blocks are
stacked to form a cascaded structure to build the SEN as
shown in Fig. 3(b), and the feature maps generated by SPM
are expanded between the stages to gradually refine the details
of the hidden feature.

Specifically, in the jth stage, the feature expansion is
accomplished by the CT(-) operation by modifying the param-
eters of n and s. In this way, the SEM expands the receptive
field of the subpixels and increases the size of the feature

x; = x; ® RB(x;_2)
RB(x) = BN(CT(x, K, 4.5.4))
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Fig. 3. Framework of SPM and SEN. The architecture of (a) SPM and
(b) SEN.

TABLE I
PARAMETER SETTING AND OUTPUT SIZE IN THE SEN

Block Size of output (¢,h,w) K (n,q,sd)
CTB 1 (100, 15, 15) (100,3, 1, 1)
CTB2 (100, 15, 15) (100,3,1, 1)
Stage | me7p3 (100, 15, 15) (100,3, 1, 1)
CTB 4 (100, 15, 15) (100, 3,1, 1)
CTB 1 (50, 43, 43) (50,3.3, 1)
CTB2 (50, 43, 43) (50,3,3, 1)
Stage2 g3 (50, 43, 43) (50,3, 3, 1)
CTB 4 (50, 43, 43) (50,3,3, 1)
CTB 1 (25, 85, 85) (25,3,2, 1)
CTB2 (25, 85, 85) (25,3.2,1)
Stage3 g3 (25, 85, 85) (25,3,2, 1)
CTB4 (25, 85, 85) (25,3,2,1)
CTB 1 (16, 85, 85) (16,3,1, 1)
CTB2 (16, 85, 85) (16,3, 1, 1)
Stage 4 I"o1g 3 (16, 85, 85) (16,3, 1, 1)
CTB 4 (16, 85, 85) (16,3, 1, 1)

maps, enabling the model to learn more abstract and rich infor-
mation from HSIs. Considering the HSI dataset with a sample
size of 15 x 15 and 16 distinct classes, the hyperparameter
setting and sizes of the specific layers of SEN are listed in
Table L.

Additionally, while expanding the spatial mapping to extract
the latent information between SPMs, we incorporate the
CMRSB to capture channel information and optimize channel
reduction. The specific CMRB is described in Section III-D,
and the feature fusion with CMRB is defined as follows:

X, = max(BN(CT(x4)) ® CM(x2), 0) ®)

where CM(-) denotes the processing of the CMRB, and x, is
the output of the SPM.

Afterward, the extracted features are fed into the GAP layer
to obtain an embedded representation of the corresponding
class. Notably, in our model, the GAP layer replaces the
original fully connected layers to generate the embedding
with the channel number of the categories that need to be
classified. Thus, the last GAP layer serves as the classifier for
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(]
v Output

Fig. 4. Tllustration of CMRB.

the proposed model. In the training phase, the cross-entropy
loss J is employed for model optimization.

D. Spectral Compression by Channel Modulation

To mine the effective channels of the proposed model,
we present CMRB to reduce spectral redundancy and refine
the feature with channel saliency. Remarkably, the CMRB
identifies the jointly important channels across different data of
one batch to enhance the model learning ability by the specific
channels. As shown in Fig. 4, the key part of the CMRB is the
channel modulation module (CMM), which mainly consists of
the GAP layer, and the saliency modulation module (SMM).

First, assume the feature X; is the output of the last
CTB block, which represents the input feature matrix of a
mini-batch with the dimension of (b, c, h, w), b represents
the batch number, ¢ is the number of channels, 4 means
the height, and w is the width of the matrix, respectively.
Afterward, GAP is employed to leverage the global-level
information to generate the matrix X with the dimension
of (b, c), which retains only the channel dimension for the
following calculation.

Next, the SMM block is responsible for calculating channel
saliency by measuring the similarities between different data
within a batch dynamically, which is implemented by the
following equation:

Softmax (Xf ® (X¢) T)
DIM(X;)

SMM(X{) = 9)

where ® is the matrix multiplication, DIM(-) is the
second-order norm calculation, and softmax(-) is the activation
function, which is intended to prevent numerical overflow in
the computation.
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Subsequently, the channel saliency matrix denoted P (X7)
is calculated with the following formulas:

X7 = CT®(EPD(XY))
SMM (X{) ® X}
DIM(X})

where CT®(") represents the 1-D CT operation, EPD(-)
denotes dimension expansion transformation, which is nec-
essary for the dimension transformation of X; from (b, c) to
(b, 1, 0).

The values in P(X]) reflect the modulated channel feature
constrained by all the samples in one batch, which focuses on
the characteristics of the channel and the shared information
across different samples. Lastly, the feature fused with the
channel modulation is defined as the following equation:

CM(X;) = X; + P(X{) © X;

(10)

P(xf) =

an

12)

where CM(-) denotes the process of CMRB, and © means the
dot product operation.

Unlike the implementation with Softmax to activate the
weight of each channel, CMRB is specified with wide adapt-
ability by the involvement of all the data in one batch.

E. Multisize Training Strategy

In this article, we present a multiple-size training (MST)
strategy for the HSIC model, which is the first attempt to
transform the multisize feature processing from the model
construction to the training phase. The MST is a simple yet
powerful approach that significantly enhances classification
performance. Besides, SST is beneficial to the adaptability
of handling varying sizes of test samples, which generates
stable performance even in situations where the size of the
test sample is different from the training samples.

Assuming that the training set 1is denoted as
{81, 85,...,Sy}, the validation set 1is denoted as
(T, T..... Ty}, where Sp = {(/.y)), T = {(x/. )},
i e {1,...,n}, xf‘ is the ith sample with the patch size
of I, x [, y; is the label, and n is the sample number.
t € {l,...,m}, m is the number of the size sizes. As shown

in Fig. 5, the training order should be determined first, then
fed the corresponding samples xf’ into SMESC, and the
Adam is adopted to optimize the model subsequently. After
training with the /, x [,, we evaluate the model on a validation
set, and the training followed up with /,; x ;4| is finetuned
with the best performance on the /; x /,. Notably, the training
order in terms of /, is flexible, that is, the sort of {/,} can be
in ascending or descending order, even out of order. In the
experimental section, we conduct a series of experiments to
evaluate the performance of different orders in MST. Besides,
it is worth emphasizing that MST is not exclusively restricted
to the proposed HSIC network and exhibits effectiveness
when applied to other networks as well.

Advantage: MST adopts the sequential training order,
which means the samples with different sizes are fed into the
model successively. The MST policy also benefits from an
iteration property that allows the model to learn and integrate
information about multisize features, ultimately leading to a
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|
¢t=1 t=m
Picking Order
{Qi} {Qa} {Qn}
Fed Sample
Serial Training [=> SMESC L —p| SMESC |- I*Er_pl SMESC
Validation
‘ Training ‘ Training Training
Reload

Fig. 5. Tllustration of MST procedure.

more robust feature space. This iterative approach enables the
model to build a more complete and informative representation
of the specific category, especially in the few-shot situation.
Particularly, the simple but powerful training strategy plays a
crucial role in ensuring the size insensitivity of the model,
which enables the model to handle testing samples with
different sizes and achieve robust performance.

F. Algorithm of the SMESC

Overall, the algorithm of the proposed SMESC with the
parameters of 6 trained with MST is listed below.

Algorithm 1 Training SMESC With MST
Input: {5}, S, ..
Output: 0
Initialize 6 with random Gaussian values
Fori=1to N do

{Q; }< Get training set S; from {S;, S», ..., Sy}

{T; }<« Get validation set 7; from {T, T, ..., Ty}

For e =1 to Epoch do

For b =1 to Batch do
Randomly generate a mini-batch sample
Feed samples into SMESC and get the
prediction
J < Calculate the prediction loss
0 =<« Vy(J) Update & via Adam
optimizer
End

Evaluate on 7; and Save the best model
End

Reload the model
End

., Sy}, iteration number N, 6

IV. EXPERIMENT AND ANALYSIS
A. Data Description

We evaluate the performance of our proposed approach on
four widely used HSI datasets.
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(e) (®
Fig. 6. Classification maps for the IP dataset. (a) Ground-truth map. (b) RSSAN. (c) pResNet. (d) SSMTR. (e) SSTN. (f) SSFTT. (g) SMESC-S. (h) SMESC.

1) Indian Pines (IP): The IP dataset was acquired by the
AVIRIS sensor over the IP test site in northwestern
Indiana in 1992. The imagery captures 200 spectral
bands across 145 x 145 pixels, with a spatial resolution
of 20 m and 16 distinct classes after removing water
absorption bands.

2) Houston: The Houston dataset was collected with the
ITRES CASI-1500 sensor. This scene covers the Univer-
sity of Houston campus with a resolution of 349 x 1905,
144 spectral bands, and 15 classes of ground objects.

3) KSC: The KSC dataset was captured using the AVIRIS
sensor at the Kennedy Space Center in Florida on March
23, 1996. The imagery contains 176 spectral bands after
removing water noise, with a spatial resolution of 18 m
and 13 categories.

4) Botswana: The Botswana dataset was captured by the
HYPERION sensor on board the EO-1 satellite of the
Okavango Delta between 2001 and 2004, which covers
145 spectral bands to distinguish 14 types of ground
objects. The resulting scene contains 256 x 1476 pixels.

B. Experimental Configuration

To verify the effectiveness of the proposed SMESC, the
methods including RSSAN [44], pResNst [45], SSMTR [46],
SSTN [47], and SSFTT [48] are chosen as the comparison
methods, which are replicated by the codes supplied by
authors with the best parameter settings. Besides, we record
the approach of SMESC without MST as SMESC-S in the
comparison.

1) CNN-Based Methods: RSSAN and P-ResNist.
2) Transformer-Based Methods: SSMTR, SSTN,
SSFTT.

and

(d)

(g

In the experimental part, we randomly select 20 samples
for each class as the training set, 5% of the samples as the
validation set, and utilize all samples as the testing set for all
the datasets. Especially, we use five samples as the validation
set for the Botswana data, and the sample size of all four
datasets is 15 x 15. For SMESC-S and SMESC, we adopt
the Adam optimizer and set the batch size to 16, the learning
rate to 0.0001, and the epoch to 300. The SMESC model is
trained with the MST strategy with the order of {3, 5, 7, 9,
11, 13, 15} as training sequences, and the rest of the settings
are the same as SMESC-S.

In the comparison and analysis, overall accuracy (OA), aver-
age accuracy (AA), and Kappa coefficient are the main criteria
adopted to evaluate classification performance in the following
experiments. To ensure a fair comparison, all the experiments
are conducted by repeating five times, and the best perfor-
mances are recorded in the following tables.

C. Comparison and Analysis

In this section, we present a comparison of our method
with other approaches, the classification results are reported
in Tables III-VI and Figs. 6-9. Based on the results, we have
made the following analyses.

1) Compared to the CNN-Based Models: As observed from
the tables, RSSAN results in a relatively limited performance
improvement, which incorporates a spectral and spatial fusion
module, and does not effectively capture spatial information.
The performance on the IP dataset is limited to 70.65% due
to the low spatial resolution and severe sample imbalance.
While the pResNet approach leverages spatial contextual infor-
mation fusion to enhance spatial information. Since pResNet
fails to maintain a sufficient spatial feature size, leading to
limited spatial information capture and poor performance,
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Fig. 7.
(h) SMESC.

(b)

®
Fig. 8. Classification maps for the KSC dataset. (a) Ground-truth map. (b) RSSAN. (c) pResNet. (d) SSMTR. (e) SSTN. (f) SSFTT. (g) SMESC-S. (h) SMESC.

TABLE I
ABLATION STUDY ON THE FOUR DATASETS

SEN M v v v
CMRB v v
MST v v
Indian Pines 92.53+0.45 94.4140.65 94.65+0.70 97.31+0.46
Houston 93.60+0.29 94.30+£1.06 96.15+0.48 97.51+0.31
Botswana 94.34+0.79 95.20+1.16 96.80+0.80 98.17+0.75

KSC 99.38+0.25 99.63+0.17 99.75+0.19 99.93+0.04

particularly on the Indian dataset. In contrast, our proposed
method maintains a sufficient spatial size, enabling the model
to capture more comprehensive spatial information and achieve
superior classification results.

Classification maps for the Houston dataset. (a) Ground-truth map. (b) RSSAN. (c) pResNet. (d) SSMTR. (e) SSTN. (f) SSFTT. (g) SMESC-S.

(d

(€3] ()

2) Compared to the Transformer-Based Models: Tables
IV-VII illustrate that the transformer-based model including
the SSMTR, SSTN, and SSFTT frameworks yields less
competitive performance than our method. In specific, among
the three models, SSFTT achieves the highest OA, which are
89.06%, 91.31%, and 93.75% for the IP data, Houston, and
Botswana, respectively. For the KSC data, the SSTN model
is the most effective and achieves an OA of 91.98%. While
SSMTR has attempted to capture advanced semantic informa-
tion by utilizing reconstructed image elements, the extracted
features with limited samples may not be sufficient for the
category representation, ultimately leading to reduced classi-
fication accuracy. In contrast, our approach has demonstrated
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Fig. 9.
(h) SMESC.
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"t

Classification maps for the Botswana dataset. (a) Ground-truth map. (b) RSSAN. (c) pResNet. (d) SSMTR. (e) SSTN. (f) SSFTT. (g) SMESC-S.

TABLE III
CLASSIFICATION RESULTS (%) WITH COMPARED APPROACHES ON THE IP DATASET

Color Class RSSAN __ pResNet __ SSMTR SSTN SSFTT __ SMESC-S __ SMESC

1 - Alfalfa 76.98 100 90.81 100 100.0 100.0 100.0
2 Corn-notill 81.34 65.2 84.69 65.55 83.33 93.70 97.69
3 I Corn-mintill 87.8 79.88 92.4 80.72 95.54 97.47 96.63
4 [ ] Corn 77.25 96.2 83.44 97.89 94.09 100.0 100.0
5 [ ] Grass-pasture 99.52 91.93 93.24 88.2 95.03 98.76 97.10
6 Grass-tress 83.38 98.36 85.23 96.58 94.24 98.90 96.85
7 I Grass-pasture-mowed 52.52 100 474 100 100.0 100.0 71.43
8 [ Hay-windrowed 53.94 100 57.48 98.12 95.39 100.0 100.0
9 Oats 55.91 100 67.65 100 100.0 100.0 100.0,
10 [ Soybean-notill 76.37 69.96 64.14 73.87 69.96 89.61 96.50
1 Soybean-mintill 57.89 77.68 49.55 79.51 86.52 96.99 98.62
12 [ Soybean-clean 54.99 85.5 69.75 80.27 84.99 94.10 97.81
13 [ ] Wheat 36.25 99.51 42.64 99.51 98.05 100.0 100.0
14 [ ] Woods 96.96 81.66 95.56 94.94 97.94 99.60 99.76
15 Buildings 91.36 100 97.58 86.27 99.74 99.22 98.19
16 | Stone 76.98 98.02 90.81 100 100.0 97.67 100.0
OA / / 70.65 81.62 73.13 83.02 89.06 96.64 98.07
AA / / 72.16 90.3 74.77 90.09 93.42 97.95 96.84
Kappa / / 68.27 79.18 70.97 80.73 87.56 96.18 97.80

the best performance across all four datasets. After analyzing
the results, we have identified several factors that may have
contributed to this phenomenon. First, we did not utilize PCA
dimensionality reduction or normalization operations in all the
HSIC models, which could have increased the classification
difficulty. Additionally, while SSMTR and SSTN use larger
sample sizes of 27 x 27 and 9 x 9, respectively, we opted
for a smaller sample size of 15 x 15, which may have led
to performance degradation. Furthermore, the relatively few
samples may cause the limited performance of transformer-
based models, which typically require a larger number of
samples for optimal results. Notably, the long-tailed distri-
bution problem in the Indian dataset represents another key
factor that impedes the effectiveness of the three frameworks.

3) Comparison of Different Datasets: QOur proposed
approaches including SMESC-S and SMESC, demonstrate
superior performance across all datasets. In particular, SMESC
proves to be more effective than SMESC-S due to the
utilization of the MST strategy. Among the compared meth-
ods, the SSFTT method outperforms others for the IP
and Houston datasets. Conversely, for the Botswana and
KSC datasets, the pResNet model achieves higher accu-
racy compared to other models, with accuracies of 98.37%
and 94.32%, respectively. In addition, since different land
cover classes in the KSC dataset typically exhibit significant
differences in spectral features and fewer testing samples,
our methods yield better performance on KSC than other
datasets.
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TABLE IV
CLASSIFICATION RESULTS (%) WITH COMPARED APPROACHES ON THE HOUSTON DATASET

Color Class RSSAN pResNet SSMTR SSTN SSFTT SMESC-S SMESC
1—- Healthy 96.48 95.84 72.66 98.56 87.05 98.64 99.76
2 Stressed 81.26 97.13 91.87 78.79 98.48 97.45 99.12
3 Synthetic 95.41 96.56 97.85 92.40 97.13 99.71 100.0
4 [ Trees 87.22 93.89 84.73 87.14 93.89 99.36 94.69
5 [ Soil 99.11 99.76 97.67 97.91 94.85 100.0 100.0
6 Water 85.23 92.92 96.31 94.77 84.62 100.0 100.0
7 [ Residential 89.59 85.65 80.13 85.49 86.99 93.85 95.90
8 B  Commercial 55.06 82.56 77.25 79.50 86.90 93.57 96.46
9 Road 68.45 82.91 75.48 67.73 81.95 94.81 95.85
10 [ Highway 69.76 77.75 90.87 100.0 98.61 100.0 100.0
11 [ ] Railway 61.46 84.05 85.34 71.26 93.68 99.27 99.84
12 Parking Lot 79.48 87.51 77.94 81.27 84.10 90.59 98.05
13 [ Parking Lot 69.94 94.46 90.41 92.96 85.29 96.16 95.74
14 [ ] Tennis 89.25 100.0 89.49 100.0 100.0 100.0 100.0
15 Running 92.73 100.0 100.0 100.0 100.0 100.0 100.0
OA / / 80.37 90.17 85.45 86.68 91.31 97.17 98.18
AA / / 81.36 91.4 87.20 88.52 91.57 97.56 98.36
Kappa / / 78.78 89.38 84.30 85.61 90.61 96.94 98.03

TABLE V

CLASSIFICATION RESULTS (%) WITH COMPARED APPROACHES ON THE BOTSWANA DATASET

Color Class RSSAN pResNet SSMTR SSTN SSFTT SMESC-S SMESC

1 Water 98.52 100.0 82.96 97.78 99.63 100.0 99.63

2 B  Hippo grass 91.09 100.0 96.04 100.0 100.0 100.0 100.0

3 B Floodplain 75.70 100.0 93.63 100.0 93.63 99.60 100.0

4 [ Floodplain 98.14 100.0 97.67 100.0 99.53 100.0 100.0

5 [ Reeds 53.16 92.19 63.94 65.06 75.84 94.05 96.28

6 Riparian 86.99 92.19 95.91 43.12 91.82 99.63 95.91

7 [ Firescar 100.0 100.0 96.91 100.0 100.0 99.61 100.0

8 [ ] Island 92.61 100.0 58.13 58.13 96.55 88.67 100.0

9 Acacia 90.13 98.41 100.0 100.0 95.22 100.0 100.0

10 [ Acacia 100.0 100.0 97.98 100.0 100.0 100.0 98.79

11 Acacia 90.16 99.02 78.36 76.39 76.39 99.67 100.0

12 [ Short 91.16 100.0 99.45 100.0 97.79 97.79 100.0

13 [ Mixed 90.30 98.88 93.66 86.19 100.0 100.0 100.0

14 | Exposed 87.37 100.0 88.42 83.16 100.0 100.0 96.84

OA / / 88.64 98.37 88.55 85.75 93.75 98.55 99.14

AA / / 88.95 98.62 88.79 86.42 94.74 98.50 99.10

Kappa / / 87.70 98.23 87.60 84.56 93.23 98.43 99.07

TABLE VI
CLASSIFICATION RESULTS (%) WITH COMPARED APPROACHES ON THE KSC DATASET
Color Class RSSAN pResNet SSMTR SSTN SSFTT____ SMESC-S SMESC

1 Scrub 99.21 97.90 90.93 99.21 97.77 98.29 100.0
2 [ Willow swamp 72.84 93.83 85.60 92.59 20.58 94.29 94.24
3 [ ] CP hammock 67.97 79.30 90.23 100.0 82.42 100.0 100.0
4 I Slash pine 52.38 91.27 75.40 0.0 43.65 97.62 94.44
5 [ ] Oak/Broadleaf 90.06 96.89 78.26 89.44 59.63 83.85 100.0
6 Hardwood 81.22 85.59 79.48 95.2 2533 99.13 99.13
7 [ Swamp 99.05 98.10 97.14 97.14 94.29 100.0 100.0
8 [ ] Graminoid 79.12 90.26 54.52 95.59 54.99 100.0 100.0
9 Spartina marsh 90.77 98.46 92.69 91.15 85.19 100.0 100.0
10 [ Cattail marsh 44.55 91.58 92.33 94.80 94.06 100.0 100.0
11 [ ] Salt marsh 99.76 99.52 97.85 100.0 99.76 100.0 100.0
12 [ ] Mud flats 63.02 88.07 59.64 95.03 92.84 99.40 100.0
13 [ ] Water 98.27 99.57 99.14 100.0 99.89 100.0 100.0
OA / / 82.75 94.32 85.40 91.98 81.31 98.77 99.42
AA / / 79.86 93.10 84.09 88.47 73.11 97.89 99.06
Kappa / / 80.80 93.67 83.77 91.07 79.02 98.63 99.36

D. Ablation Studies

To demonstrate the contribution of the presented models
of the SMESC method, we conducted ablation studies on the
four datasets, and the average OAs and standard deviations of

the five times are shown in Table II. In the experiments, the
baseline of SEN represents the presented expansion network
without the CMRB module. As can be observed, the approach
with SEN generates the lowest OAs for the four datasets. The
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TABLE VII
COMPARISON OF THE COMPUTATION COST (MB)
RSSAN | pResNet | SSMTR | SSTN | SSETT SMESC-S SMES
C
P| o0.19 1.12 1.49 0.03 0.83 0.42 0.42
F| 032 0.92 1.17 0.11 2.35 7.35 7.36
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Fig. 10. OA with different numbers of training samples of each category on
the compared methods.

SEN + CMRB approach acquires higher OA than SEN, and
the SEN + CMRB + MST obtains better performance than
SEN + MST, which illustrates the effectiveness of the CMRB
for all the datasets. The results also show the CMRB module
has a positive effect on the dataset with more bands, that
is, the IP dataset, the approaches with CMRB have superior
performance than the implementation without it.

The approaches with the MST strategy achieve 1%-3%
improvement compared to SEN and SEN + CMRB, respec-
tively. On the IP dataset, SMESC achieves nearly a 5%
improvement over SEN. Furthermore, with the CMRB and
the MST strategy, the model yields the best performance.
In specific, the accuracies of the IP, Houston, and Botswana
improve by 4.85%, 3.09%, and 2.83%.

E. Analysis of Parameters and Robustness Evaluation

1) Impact of Different Numbers of Samples: To evaluate
the effect of different numbers of samples on the proposed
SMESC model, we conduct the experiments on the IP dataset
with the training number of each category varied in the set
of {4, 8, 12, 16, 20}. In this section, the sample size is
fixed to 15 x 15, and the SSTN and SSFTT methods that
performed better than other compared methods are utilized
for comparison. We repeat each experiment five times and
record the average OA in Fig. 10. As can be seen, the values
of OA of all methods gradually improve as the number of
samples increases. Notably, our proposed method consistently
outperforms the other methods by achieving higher classifi-
cation accuracy compared to the other two methods across
different sample sizes. Besides, our SMESC-S and SMESC
methods generate satisfactory results even in the situation with
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Fig. 11. OA with different sizes of training samples on the compared

methods.

only four samples. In particular, the SMESC yields an OA of
81%, which exceeds the SSTN model by nearly 15%. These
results indicate that the proposed method effectively utilizes
sample information and multisize information even with fewer
labeled samples.

2) Impact of Different Sizes of Samples on the Model: To
assess the impact of sample size on our method, we conducted
tests on the IP dataset with the patch size of k x k, which
k € {5,7,9,11, 13, 15}. Specifically, we randomly selected
samples with different sizes for training and testing and
repeated each experiment five times for each sample size. The
SSFTT and SSTN methods are employed for comparison, and
the final experiment results with the average OA are presented
in Fig. 11.

As observed, smaller sample sizes containing less spatial
information result in lower classification accuracy observed
for all four methods. As the sample size increases, the OA of
the SSTN method initially improves but begins to decline later,
with the best performance achieved with a sample size of 9 x
9. Although the classification performance of SSFTT improves
with increasing sample size, its accuracy still falls short of our
method, particularly when compared to the SMESC method,
which is lower by nearly 12%. These results further validate
the robustness of our proposed method, which maintains the
spatial size and effectively captures spatial information to
achieve superior classification performance.

Furthermore, the SMESC method outperforms the other
methods across all sample sizes. In particular, it leads by nearly
7% with a sample size of 5 x 5, indicating that the multisize
training strategy enables the model to fully absorb the spatial
information embedded in samples of different sizes, resulting
in better classification results.

3) Generalizability of CMRB: In addition, to verify the
generality of the CMRB proposed in this article, we apply it to
the widely used ResNet network and conduct five experiments
on the IP dataset, with the results and average OA values
shown in Fig. 12. Specifically, we employ CMRB in the
residual stage of ResNetl8 by replacing the 1-D ConvT in
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CLASSIFICATION RESULTS (%) WITH COMPARED APPROACHES WITH AND WITHOUT MST ON THE IP DATASET

size RSSAN-S RST\?A pResnet-S pResNet SSMTR-S SSMTR SSTN-S SSTN  SSFTT-S SSFTT SMESC-S SMESC
3x3 291 69.23 5.31 70.1 2.37 80.31 574 89.17 5.03 70.21 80.42 84.77
5%5 3.78 74.53 4.27 74.93 3.08 82.2 11.85 9233 13.17 75.95 93.61 95.13
7% 10.21 77.21 12.03 79.61 18.09 87.71 16.09 9322 10.56 85.03 95.64 97.57
9x9 17.45 79.03 30.57 82.64 16.43 89.31 44.04 93.07 19.65 90.63 96.07 98.14
11x11 27.13 82.61 41.50 84.61 27.46 88.56 3553  91.88 27.06 93.03 95.78 98.37
13x13 3536  84.32 37.03 85.03 35.30 87.46 39.00 90.01 38.61 93.52 94.81 98.04
15x15 64.51 85.88 82.51 84.93 70.01 85.45 82.04 88.19 89.76 93.24 93.26 97.52
17217 30.27  84.09 43.05 83.22 33.29 84.32 3632 8752 31.78 92.89 91.19 96.34
19x19 20.04  83.61 30.02 82.17 27.30 82.17 21.03 86.28 27.33 92.37 89.27 94.64
TABLE IX

CLASSIFICATION RESULTS (%) WITH COMPARED APPROACHES WITH AND WITHOUT MST ON THE HOUSTON DATASET

size RSSSAN' RSI\?A pR";“"" pResNet ~ SSMTR-S ~ SSMTR  SSTN-S  SSTN  SSFTT-S  SSFIT  SMESC-S  SMESC
3x3 1.30 71.34 3.97 67.71 4.40 74.77 4.24 88.58 2.26 64.97 83.88 92.74
5%5 6.89 80.19 5.32 76.59 7.12 84.66 11.15  91.02 3.66 74.1 96.43 99.39
77 13.86 87.09 21.61 85.78 17.94 91.46 2448 92.47 14.32 85.69 98.66 99.68
9x9 23.34 91.38 18.60 91.22 33.92 95.06 38.87 93.15 25.14 93.07 99.53 99.64
11x11 35.01 92.29 28.40 93.33 39.67 95.3 46.08 9351 3034 94.54 99.63 99.53
13x13 37.02 90.78 43.52 93.47 55.92 9438  56.39 92.3 50.49 93.1 99.55 99.31
15x15 79.42 88.45 89.56 92.47 84.42 92.7 86.02 90.54 91.27  88.59 99.31 98.42
17x17 30.21 87.21 37.23 92.02 36.77 91.56 37.55 8937 4279  87.63 98.70 97.05
19x19 25.32 86.59 35.04 91.53 36.10 91.03 3523 89.09 36.56 86.73 97.34 95.73
0A% els in this article strike a balance between the number of
% parameters, computation, and performance. Compared to the
95 original ResNet model, the SEN model has less than 10% of
94 the number of parameters with better performance. Apparently,
93— TITITITITIT IS gTorIiT T iomimrmieis the CMRB module proposed in this article has minimal impact
9 on the number of parameters.
of e g BEER BN _ BS Compared to other methods, the SSTN model has lower
% Param and FLOPs, while the performance is reduced severely.
“ The RSSAN and pResNet models have a reasonable number
of Param and FLOPs with unsatisfactory accuracies. Similarly,
5 the SSMTR and SSFTT models have increased the number of
87 . ) 2 . s parameters, but the performance is not further improved.
ResNet ResNet CMRB - - - - - avg ResNet - - - - avg_ResNet CMRB Overall, since the models focus on the spatial size informa-
tion expansion, the SMESC-S and SMESC have better clas-
Fig. 12.  OA comparison in terms of CMRB. sification performance, and balance the relationship between

the CMRB with a 1-D Conv operation and maintaining the
rest of the parameters unchanged. For convenience, we refer
to this model as the ResNet-CMRB model. The average
OA of the ResNet-CMRB is nearly 2% higher than that
of the original ResNet, which proves the effectiveness and
generalization ability of the CMRB module. Except in the
SMESC model, the presented CMRB effectively captures
salient channel information in other networks and provides
valuable feedback to the model, which ensures that the specific
network learns and utilizes relevant spectral information for
accurate classification.

4) Computational Cost: In this section, we present the
computational cost of the compared methods in Table IX,
including the number of floating-point operations (FLOPs)
denoted as F and network parameters (Param) denoted as P.
As shown in Table VII, the SMESC-S and SMESC mod-

performance, number of parameters, and computation.

F. Analysis of the Multisize Training Strategy

In this section, we conduct experiments to evaluate the
impact of training order on the performance of MST with
different patch sizes (k x k). We set the patch size k chosen in
the set of {5, 7,9, 11, 13, 15}, and the patch size for the testing
samples is 15 x 15. The average OA of five experiments for
each training sequence is recorded in Fig. 13.

As observed, the @ and b sequences perform slightly better
than the other sequences by achieving higher classification
accuracies. We speculate that the model iteratively learns
feature information and different-sized samples contain unique
information that complements other sizes. In this way, the
SMESC model learns multisize knowledge and obtains more
comprehensive high-level semantic information to improve the
classification performance on different samples. In addition,
in sequences ¢ and d, we trained the model with training
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Fig. 13.  OA comparison with different orders of the MST with SMESC for the IP data.

samples of size 13 x 13, 15 x 15, and 11 x 11, 15 x 15,
respectively, and the final results were different. We assume
that the reason is that different-sized samples contain vary-
ing background information, and the model is susceptible
to complex background features, which can affect the final
classification results. This phenomenon is also observed in the
experiments with sequences e, f, and g.

For the sequences i, j, k, I, n, and o, we conduct the
experiments with the training samples of 15 x 15 and test
the model on 15 x 15 samples, as can be seen, the results are
relatively inferior. It should be noted that the accuracies did not
decrease by a large margin since our method maintains enough
spatial information. Besides, sequences & and r are unordered
and partially sampled, and the results also demonstrate good
classification accuracy. Since the unordered sequence increases
the learning difficulties, the performance is slightly lower than
the accomplishment with the situation of a and b. Although it
is challenging to identify an optimal solution among various
combinations of sequences, we attempted to search for an
optimal solution in this experiment. In terms of the results, the
increasing and decreasing order suites a step-by-step learning
approach for different samples, which reduce the fluctuation
for the model training.

Besides, we have conducted experiments with the compared
models to validate the adaptability of the approaches with
MST on the IP and Houston datasets. The experimental results
are demonstrated in Tables VIII and IX. Specifically, we train
the model with samples of size 15 x 15 and evaluate the model
on different patch sizes (k x k, k =5,7,9, 11, 13, 15). In the
tables, the model with the suffix “-S” indicates the same model
without the MST policy. As observed, each row displays the
highest accuracy of five executions of the test samples with the
corresponding sample size indicated in the first column. The
highest accuracies are obtained when the testing size matches
the training size, which indicates that non-MST approaches
are sensitive to the sample size, whereas the model with
MST effectively addressed this issue and achieved favorable
results on all the scales. The comparison results highlight the
advantages of the MST in enhancing the adaptability of the
HSIC model and absorbing multiscale information of HSI data.
Besides, as observed in the columns with a green background
and their adjacent columns in the two tables, it is evident that
the model incorporating the multiscale information with the
MST strategy consistently outperforms the non-MST model,
which also illustrates the effectiveness of our proposed training
strategy.
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V. CONCLUSION

In this article, we rethink and explore the importance of the
spatial size factor. Based on the foundation that the original
convolution operation is contrary to the inherent characteristic
of HSI data, we employ the transposed convolution operation
to extract the hidden information of the subpixel and a SMESC
framework is presented for HSIC. Separately, the proposed
SMESC has the following components in terms of spatial size
factor.

1) The SEN is designed to extract hidden information
from subpixels with enlarged feature maps, where the
size preservation block is built to ensure that the HSIC
model maintains a consistent mapping to facilitate stable
learning.

A CMRB is responsible for reducing spectral redun-
dancy while ensuring the focus on the spatial informa-
tion of the model.

2)

A straightforward yet highly effective multiple-size training
strategy is designed to replace the conventional multiple-size
FE branches. The proposed architecture is illustrated to
outperform other advanced methods through extensive exper-
imentation and analysis of four HSI datasets.

In future research, we intend to explore the integration
of the proposed expansion features with the self-attention
mechanism in the graph neural network. By incorporat-
ing expansion spatial-spectral features and leveraging the
self-attention mechanism in graph-structured data, we aim to
improve the ability of the model to capture intricate spatial and
spectral relationships and further enhance the discriminative
representation of subpixels for HSIC.
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