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Abstract— Semantic segmentation in remote sensing images
(RSIs) assigns unique semantic labels to each pixel and plays
a crucial role in real-world applications such as environmen-
tal change monitoring, precision agriculture, and economic
assessment. Although convolutional neural networks (CNNs)
and Transformer-based models for semantic segmentation of
RSIs have achieved remarkable success, existing approaches still
struggle to accurately detect weak edges and occluded objects
due to the complexity and fuzziness of edges in RSIs. To over-
come this obstacle, we propose a novel probability-guided edge
enhancement network (PEEN) for semantic segmentation of RSIs,
which is the first attempt to leverage the probability function (PF)
to guide the segmentation model in performing edge prediction
for RSIs. Specifically, in the feature extraction stage of PEEN,
we present a convolutional self-attention mechanism to enhance
the global feature representation of the encoder–decoder net-
work. In the edge enhancement stage of PEEN, we innovatively
build an iterative probability-guided edge prediction module to
refine edge prediction mathematically and iteratively. With the
cooperation of the mentioned two stages, the proposed model
yields precise segmentation of the objects and edge portions in
RSIs. Experimental results and analysis demonstrate that the
PEEN model outperforms the existing popular CNN-based and
Transformer-based models in semantic segmentation with 85.54%
and 88.35% of mean intersection over union (mIOU) on the
Vaihingen and Potsdam test datasets, respectively. Our code is
available at https://github.com/Zyk517/PEEN

Index Terms— Edge enhancement, probability-guided, remote
sensing, semantic segmentation.

I. INTRODUCTION

IN RECENT years, remote sensing image (RSI) interpreta-
tion technology [1], [2] has made remarkable advancements

and plays a pivotal role in various fields such as precision agri-
culture [3], environmental monitoring [4], urban planning [5],
[6], and disaster management [7], [8]. Among the applications,
semantic segmentation of RSIs (SSRSIs) [9], [10] aims to
partition the RSI into semantically meaningful regions and
assign each pixel with a specific class label, which is crucial
for practical applications including vegetation analysis [11],
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urban cover investigation [12], and identification of natural
disasters like floods and wildfires [13].

The development of semantic segmentation tasks has been
extremely rapid in the past few decades. Initially, tradi-
tional semantic segmentation methods generally relied on
handcrafted feature extraction that was implemented by seg-
mentation algorithms such as region growing [14], graph
cuts [15], and Markov random fields [16]. While effective
in certain cases, traditional methods often struggled in com-
plex scenes and could not learn hierarchical representations
directly from RSIs. The emergence of convolutional neural
networks (CNNs) [17] promotes the progress of RSI methods.
Wang et al. [18] proposed the adaptive feature fusion UNet
(AFF-UNet), which incorporated a channel attention convo-
lution block and a spatial attention block based on CNNs.
With the collaboration of the blocks, the AFF-UNet approach
effectively addressed the challenges of varying object sizes
and class confusion in RSIs. Zeng et al. [19] proposed a
multiscale global context network (MSGCNet) for SSRSIs,
which employed convolution kernels of different sizes to
establish a multiscale perception fusion model, and effectively
decreased the problems of target scale differences and class
confusion in RSIs. Compared with traditional methods, the
CNN performs well in capturing fine-grained features and
improves the segmentation ability of RSIs to a large extent.
Nevertheless, the CNN-based methods merely capture local
context information and neglect global context information in
RSIs. In recent years, inspired by the remarkable success of
the Transformer models in natural language processing tasks,
Transformer-based methods have gained traction as promising
approaches in semantic segmentation. Unlike CNNs, Trans-
formers employ self-attention [20] mechanisms to capture
long-range information from fed samples and supply effec-
tive modeling of spatial context and global relationships.
Li et al. [21] proposed a synergistic attention percep-
tion neural network (SAPNet) to relieve the attention bias
problem of SSRSIs with the presented synergistic atten-
tion module and space–channel attention. Liu et al. [22]
proposed a global–local Transformer segmentor (GLOTS)
framework for RSIs, which designed a global–local attention
module to solve the problems of inconsistent feature repre-
sentation and insufficient utilization of context information.
Nevertheless, self-attention mechanisms demand significant
computational resources and tend to emphasize global infor-
mation excessively [23]. As a result, transform-based semantic
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Fig. 1. Exhibit the case where the small objects are occluded. (a) Car is
shadowed by the building. (b) Car is obscured by the building or a tree.

segmentation models are prone to ignoring the local details
of RSIs and generating undesirable segmentation results at
edges.

As is known, capturing fine-grained details and boundaries
between different objects is crucial for SSRSIs. As illus-
trated in Fig. 1, small objects (e.g., cars) are occluded by
larger objects (e.g., buildings or trees) or obscured by the
shadows in RSIs. In such situations, traditional CNN-based
or Transformer-based methods often encounter difficulties in
precisely delineating object boundaries. To address this issue,
researchers have made numerous efforts and developed various
edge enhancement techniques [24], [25], [26] to strengthen
the detection of edges or boundaries. The popular techniques
consist of edge detection operators [27] and multiscale fea-
ture fusion [28], incorporating edge information [29] and
constraining with edge-related loss functions [30]. Although
edge enhancement methods enhance the detection of edge
information to a certain extent, existing approaches still have
limitations in accurate edge prediction, especially with occlu-
sion and shading of RSIs.

In this article, we propose a novel probability-guided edge
enhancement network (PEEN) for SSRSIs. The core idea
of the presented network solves the problem of predicting
edge pixels from a mathematical probability point of view
for the first time. Specifically, in the feature extraction stage,
the PEEN model incorporates the convolutional self-attention
(Conv SA) mechanism to capture long-range dependencies
through depth-separable convolution with large kernels for
segmenting occluded objects. In the edge prediction enhance-
ment module, we developed the iterative probability-guided
edge prediction (IPEP) module, which employs the PF to pre-
dict edge pixels with the supervision of edge labels accurately.
Furthermore, the PEEN network incorporates asymmetric

convolutional blocks during the iterative process, thereby
facilitating the segmentation precision of edge pixels gradually.

In summary, the main contributions are as follows.
1) Unlike the traditional methods that rely on designed

networks or constrained loss functions for edge enhance-
ment, we conceptually present a new PEEN for SSRSIs.
Our model converts edge prediction to a distance prob-
ability computation task and mathematically achieves
edge detection, which is the first attempt to formulate
edge prediction as a probabilistic task in semantic seg-
mentation.

2) A pixel probability-to-boundary distance mapping is
established through a specially designed PF, which
incorporates relative positional relationships between
pixels rather than relying solely on isolated pixel fea-
tures. Furthermore, an iterative scheme is designed in
conjunction with different PFs to achieve progressive
refinement of edge predictions.

3) The innovative Conv SA mechanism in the encoder
is proposed to capture long-range dependencies with
large kernel convolutions, which is beneficial to address
the segmentation issues of occluded objects in RSIs
by effectively extracting global contextual information.
With this mechanism, the encoder acquires spatial
relationships and intricate features of the surrounding
objects, leading to enhanced embedding for subsequent
recognition.

The rest of this article is organized as follows. Section II
discusses the related work. Section III introduces the proposed
method in detail. Section IV reports the experiments and
provides a discussion of the experimental results. Finally, the
conclusion is outlined in Section V.

II. RELATED WORKS

In this section, we comprehensively analyze deep
learning-based approaches for SSRSIs, including CNN-based
methods, Transformer-based methods, and edge enhance-based
methods.

A. CNN-Based Semantic Segmentation Methods

The fully convolutional network (FCN) [31] is recognized
as the pioneering CNN architecture that effectively tack-
les semantic segmentation tasks in an end-to-end manner.
Subsequently, CNN-based approaches have emerged as the
dominant methods in the field of SSRSIs [32], [33], [34], [35],
[36]. Nevertheless, the oversimplified decoder architecture
of FCNs restricts the ability to extract higher-level features
and global contextual information, consequently impacting the
accuracy of semantic segmentation. To accommodate input
images of different sizes and preserve spatial information,
Ronneberger et al. [37] proposed the classical UNet network
based on the encoder–decoder structure. By incorporating skip
connections between the encoder and the decoder, the UNet
directly connects features from different layers of the encoder
to corresponding layers of the decoder, which mitigates issues
like information loss and gradient vanishing. Following the
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Fig. 2. Framework of the proposed PEEN model. The backbone is employed to extract fusion features with global context information. Subsequently, the
fusion features are fed into the IPEP module to complete the edge enhancement gradually and iteratively through PFs.

UNet, the encoder–decoder framework has become the pre-
vailing structure of RSI segmentation networks [38], [39].
Typically, Diakogiannis et al. [40], Yue et al. [41], and
Zhou et al. [42] proposed distinct skip connections to cap-
ture more comprehensive contextual information. Meanwhile,
Liu et al. [43], Zhao et al. [44], and Shen et al. [45] introduced
diverse decoder architectures to preserve semantic information
effectively.

Although the aforementioned CNN-based methods have
achieved encouraging performance, they encounter bottlenecks
in SSRSIs. Specifically, CNN-based segmentation networks
with restricted receptive fields only extract local semantic
features and cannot model global context information. In RSIs,
the occlusion of small objects presents a challenge for pre-
cisely segmenting the edges based solely on local information.

B. Transformer-Based Semantic Segmentation Methods

With the emergence of the Vision Transformer (ViT) [46]
model, researchers have attempted to apply Transformer-based
methods with self-attention mechanisms in the semantic seg-
mentation task. Most of the existing Transformers for semantic
segmentation still employ the encoder–decoder framework,
which is divided into two categories according to different
encoder–decoder combination mechanisms. The first cate-
gory is constructed by a Transformer-based encoder and
decoder structure. Typical models include the Segmenter [47],

SegFormer [48], and SwinUNet [49]. The second cate-
gory adopts a hybrid structure, which is composed of a
Transformer-based encoder and a CNN-based decoder. Gener-
ally speaking, Transformer-based SSRSI methods commonly
employ the second structure. For example, Wang et al. [50]
proposed a dual-branch hybrid CNN–Transformer network
(DBCT-Net), which fully exploited the advantages of CNNs
in local specific feature extraction and achieved the global
dependencies through the Transformer part. Liu et al. [51]
presented a Transformer-based multimodal fusion network
(TMFNet) to significantly improve the segmentation accuracy
of small targets in RSIs through the edge region attention
module.

Although the Transformer-based models have demonstrated
potential in semantic segmentation tasks, the complexity of
the self-attention mechanism is much higher than the CNN
and impacts the feasibility of the model in SSRSIs. Besides,
Transformer-based models leverage a self-attention mecha-
nism to capture global dependencies within the input sequence
and struggle to effectively capture local fine-grained informa-
tion, resulting in inaccurate segmentation of edge objects of
RSIs.

C. Edge Enhance-Based Semantic Segmentation Methods

In image segmentation, boundary information is crucial
to improve segmentation accuracy significantly. Recently,
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Fig. 3. Architecture of the backbone. We build the encoder with a Conv SA mechanism to capture multiscale global context features. Besides, the upsampling
in the decoder is performed by transposed convolution. Ci represents the number of channels of each stage.

CNN-based models have been increasingly applied to effec-
tively extract edges for image segmentation, for example,
ECAE [52], BIBED-Seg [53], and EPFNet [54]. Nevertheless,
effectively fusion edge information into semantic segmentation
tasks is a significant challenge.

Currently, edge-enhanced semantic segmentation methods
are broadly classified into two categories. The first category
involves the utilization of specific edge loss functions to
measure and minimize the discrepancy between the segmen-
tation outcomes and the ground-truth edges. For instance,
Sun et al. [55] proposed an SSRSI model that incorporates
an adaptive edge loss function constraint, which aims to
alleviate the challenges of recognizing small objects and
address the issue of sample imbalance. Li et al. [56] pro-
posed a semantic segmentation network with enhanced edge
loss and preserved spatial boundary information through the
supervision of multiple weighted edge losses. The second
category fuses the edge information to enhance the edge
information description and obtain continuous boundaries.
For example, Sun et al. [57] proposed a boundary attention
module to enhance the representation of edge information
and alleviate the issue of blurred segmentation boundaries.
He et al. [58] proposed the Edge–FCN network by introducing
edge information as prior knowledge into FCNs to revise
the segmentation results. Despite the aforementioned methods
achieving relatively accurate segmentation results along the
edges, the core mechanism relies on detecting edge informa-
tion from the image for segmentation. Notably, the utilization
of CNN-based models or edge operators for extracting edge
information from images is subject to the complexity of the
image. Since the intricate nature of object information in RSIs,

the extracted edge information often appears fragmented and
incomplete, which limits the applicability to SSRSIs.

III. METHODOLOGY

Fig. 2 illustrates the framework of the proposed PEEN
model that primarily contains backbone and IPEP modules.
The backbone network employs an encoder–decoder archi-
tecture, where the encoder captures long-range multiscale
contextual features through the Conv SA mechanism. The
decoder then utilizes transposed convolutions to gradually
restore the feature maps to the same spatial dimensions as
the original image, after which the processed feature maps are
fed into the IPEP module. In the IPEP module, we present
the iterative module (IM) with asymmetric convolutions to
enhance feature extraction from the backbone and generate
corresponding semantic predictions. Besides, we adopt PFs to
iteratively optimize the edge prediction results in the IPEP
module.

A. Encoder Based on Conv SA

The detailed structure of the encoder is illustrated in the top
half of Fig. 3. Specifically, the encoder consists of 4 down-
sampling stages. Each stage utilizes a designed large kernel
convolution-based Conv SA mechanism to extract nonlocal
features, which is followed by maximum pooling to reduce the
resolution of the embedding maps by a factor of 2. Moreover,
we implement skip connections with the 1 × 1 convolution
operation, which aids in feature refinement and mitigating the
loss of edge information.

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on July 27,2025 at 01:53:40 UTC from IEEE Xplore.  Restrictions apply. 



YU et al.: PROBABILITY-GUIDED EDGE ENHANCEMENT NETWORK FOR RSI SEMANTIC SEGMENTATION 5519717

1) Convolutional Self-Attention: In the encoder, we propose
the Conv SA mechanism to handle the contextual information.
To exhibit the difference between Conv SA and self-attention
mechanisms clearly, we illustrate the computational processes
of Conv SA and traditional self-attention mechanisms in
Fig. 4(a) and (b), respectively. As observed, the Conv SA
has a structure similar to the self-attention mechanism. The
distinction lies in the pattern adopted to generate the similarity
score matrix A. Each element A(i, j) in the similarity score
matrix A represents the correlation score between the i th
element and the j th element in the sequence; the higher the
score, the stronger the correlation between the two elements.
Instead of utilizing query (Q) and key (K), Conv SA employs a
k×k depth-separable convolution to generate A. Subsequently,
Conv SA performs a Hadamard product [59] with the value
(V) to obtain the final output. Besides, the Conv SA is
exclusively composed of convolution operations and exhibits
a linear growth in complexity. Consequently, Conv SA retains
the long-range modeling capability similar to self-attention
while reducing computational costs. Specifically, given the
input tokens X ∈ RH×W×C , we adopt a simple depth-wise
convolution with kernel size k × k and the Hadamard product
to calculate the output Z as follows:

A = DConvk×k(W1X) (1)
V =W2X (2)
Z = A⊙ V (3)

where⊙ is the Hadamard product,W1 means the weight matrix
of the k × k deep convolution, W2 is the value matrix, and
Dconvk×k denotes a depth-wise convolution with kernel size
k × k.

2) Large Kernel in Conv SA: Although a small-sized con-
volution kernel (e.g., 3 × 3) is popular in CNNs such as
VGGNet [60] and ResNet [61], it is worth noting that the
3 × 3 convolutional kernel captures mainly smaller local infor-
mation in each convolutional operation and is unable to acquire
global contextual information. In the context of SSRSIs, the
3 × 3 convolution kernel has a relatively local receptive field,
which does not effectively capture long-range dependencies
in RSIs and results in effectively identifying occluded objects.
In contrast, the large kernel convolutions in Conv SA have a
larger receptive field, enabling the model to capture features
over a wider range and assist in handling occluded objects
more effectively. In our article, we set the kernel size as
15 × 15 in Conv SA and analyze the impact of varying kernel
sizes on the model in the subsequent experimental section.

B. Decoder Based on Transposed Convolution

The structure of the decoder is demonstrated in the bottom
half of Fig. 3. Likewise, the decoder consists of 4 upsampling
stages. In each stage, the resolution of the feature map is
augmented by a factor of 2 with transposed convolution.
Subsequently, feature fusion occurs between the corresponding
decoder and encoder via skip connections, and a sequence
of convolutional layers is employed to further process the
features to extract higher-level semantic information. Through
4 consecutive upsampling stages, the PEEN model generates

Fig. 4. Comparison of Conv SA with the self-attention mechanism. Instead
of generating attention matrices via a matrix multiplication between Q and K ,
we directly produce weights with a k × k depth-wise convolution to reweigh
the value via the Hadamard product in Conv SA (⊗: matrix multiplication,
⊙: Hadamard product). (a) Self-attention. (b) Conv SA.

a feature map with a dimension identical to that of the input
RSI.

C. IPEP Module

1) Probability-Based Edge Prediction Method:
a) Principle clarification: In this section, we introduce

the principle clarification based on the probability-based edge
prediction method and present the schematic. Specifically,
as illustrated in Fig. 5, the green contour indicates the bound-
ary of the building, D, E , F , and G represent four pixels on the
building, and HE , HF , and HG denote the shortest distances
from E , F , and G to the boundary, respectively. We assume the
probability of pixel G belonging to the boundary pixel is 0 and
the probability of pixel D is 1; thus, the probabilities of pix-
els E and F belonging to the boundary pixel are determined as
1-HE /HG and 1-HF /HG , respectively. Notably, the four points
and green contour are merely examples, including both edge
and nonedge pixels, which are not four boundaries actually.
The calculation process of pixel distance is not limited to a
specific boundary, while we compute the distances between
the inner pixel of a remote sensing object and all pixels on
the boundary, and select the minimum one. In this way, the
distance is converted to the probability that it belongs to the
boundary pixels with the PF.

b) Probability-guided edge prediction: Due to the ambi-
guity and uncertainty of RSI edge pixels, it is not possible
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Fig. 5. Illustration of the relation between probability and the distance to
the boundary. HE , HF , and HG are the shortest distance from pixels E , F ,
and G to the boundary, respectively.

to accurately predict RSI edge pixels by employing a simple
distance ratio. To accurately predict all possible edge pixels,
we design the PF based on the Sigmoid function [62], which
is defined as follows:

PF(i, j) = 1−C ∗

(
2

1+ e
−αH(i, j)

R

− 1

)
(4)

C =
1+ e−α

1− e−α
; α ∈ (0,∞) (5)

where α is a parameter for generating different PFs and C is
a constant for keeping the value range of the P F in [0, 1] and
ensuring the probability of the farthest pixel belonging to the
boundary pixel is 0. (i, j) denotes the coordinates of the pixel
in RSIs and H(i, j) is the shortest distance from pixel (i, j) to
the boundary. R represents the scale of the segmented object
and is defined as

R = max
(

H(i, j)
)
; i, j ∈ O (6)

where O represents the segmented objects.
2) Iteration Module: The detailed structure of the IM is

shown in Fig. 6, which employs the 1×3 and 3×1 asymmetric
convolution block at each iteration to capture and enhance the
features at the edges. Compared with the convolution operation
with a kernel size of 3× 3, the asymmetric convolution with
a kernel size of 1 × 3 and 3 × 1 is beneficial to enable the
perception and extraction of edge information. In other words,
the asymmetric convolution operation is sensitive in specific
directions and accurately captures local directional details of
the edges. With the assistance of the IM, our network fully
leverages the information from previous predictions to itera-
tively refine and improve the accuracy of the final predictions.
Besides, the parameters in the iteration layers are optimized by
a gradient back-propagation algorithm. Specifically, assuming
f0 is the output of the backbone, the obtained feature in the
IM is formulated as

f1 = ConvBlock( f0); P1 = σ( f1) (7)
fi = ConvBlock( f0 ⊕ fi−1) (8)
Pi = σ( fi ); i ∈ (1, n] (9)

where ConvBlock refers to the asymmetric convolution block
of 1 × 3 and 3 × 1, Pi represents the segmentation predic-
tion result for each iteration,“⊕” refers to the concatenation
operation, σ(·) means the Softmax activation function, and n
denotes the number of iterations.

Fig. 6. Structure of the IM in the IPEP module, where f0 represents the
feature extracted by the backbone and the set {P1, P2, . . . , Pi , . . . , Pn} is the
prediction of segmentation results.

Algorithm 1 IPEP Module Algorithm
Require: The output of the backbone f0
Ensure: The prediction results for each iteration Pn

1: for n ∈ {1, . . . , i, n} do
2: Feed f0 into the IPEP module.
3: f1 ← f0 is enhanced via asymmetric convolution as

defined in Equation (7), generating f1 and the first
iteration segmentation prediction P1.

4: fi ← f0 and fi−1 are concatenated via Equation (8)
to derive fi .

5: Pi ← fi generates the i th iteration prediction Pi via
Equation (9).

6: end for
7: for Lossai , Lossbi and Lossi in {1, . . . , i, n} do
8: Lossai ← Calculate the mse loss for the i th iteration

with Equation (11).
9: Lossbi ← Calculate the Dice coefficient loss for the

i th iteration with Equation (12).
10: Lossi ← Calculate the total loss with Equation (13).
11: end for
12: Ls ← Calculate loss of the IPEP module with

Equation (14).
13: θ

(t+1)
i = θ

(t+1)
i − η ∂Ls

∂θ
(t)
i
← Gradient update, η is learning

rate, t is the number of training.
14: End

The algorithm flow of the IPEP module is shown in
Algorithm 1. After obtaining the initial feature map f0 from
the backbone, we propagate f0 into the first iterative layer
of the IM and yield f1. Then, f1 is utilized to generate the
prediction result P1 through the Softmax function and fed into
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TABLE I
QUANTITATIVE COMPARISON RESULTS ON THE VAIHINGEN TEST SET WITH OTHER NETWORKS

Fig. 7. Enlarged visualization of results on the Vaihingen dataset.

the next iteration layer to provide prior information for produc-
ing the next prediction result. Finally, after a certain number
of iterations, the segmentation results are reinforced. Besides,
due to the ambiguity and uncertainty of RSI edge pixels, it is
impossible to accurately predict RSI edge pixels with only
one PF. In the PEEN model, we employ a series of P Fs,
which rectify the problem of incorrect edge pixel coverage
encountered by individual P Fs. Specifically, we obtain a set
of P Fs by controlling the hyperparameter α according to 4.
In the IM, the first iterative α1 is equal to 1 (α1 = 1), and
the i th iterative αi = αi−1 + k, the value of k represents the
spacing between the values of α. In detail, the value of αi in
the i th iteration is calculated by

αi = k ∗ (i − 1)+ 1; i ∈ [1, n], k ∈ [2,∞) (10)

where n is the number of iterations, k is the step of the α

value, and i indicates the i th iteration. In our experiments, the
value of α always starts from 1.

D. Loss Function

In this work, we employ the mean-squared error (mse)
[73] constraint on pixel classification across the image and
adopt the Dice coefficient loss function [74] to enhance the
classification of edge pixels. The loss for the i th iteration is
the sum of the mse and the Dice coefficient loss. The loss
function is defined as follows:

Lossai =
1
�

∑
p∈�

∥GT(x), Pi (x)∥2 (11)
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TABLE II
QUANTITATIVE COMPARISON RESULTS ON THE POTSDAM TEST SET WITH OTHER NETWORKS

Fig. 8. Enlarged visualization of results on the Potsdam dataset.

Lossbi = 1−
2 ∗
(
prebi ∩ Gb

)∣∣prebi

∣∣+ |Gb|
(12)

Lossi = Lossai + Lossbi (13)

where GT is the ground truth, Pi is the i th entire predicted
result, x denotes pixel in the image domain �, prebi is the i th
edge prediction output, and Gb is the edge label generated by
the Canny operator. Lossai is the mse loss for the i th iteration,
Lossbi is the Dice coefficient loss for the i th iteration, and
Lossi is the total loss for the i th iteration.

Overall, the total loss Ls of the PEEN model is the sum
of the total losses (lossi ) in each iteration, which can be
calculated by the following formula:

Ls =

n∑
i=1

lossi (14)

where Lossi is the loss of the i th iteration and n is the number
of iterations.

IV. EXPERIMENTS

A. Datasets

1) Vaihingen: The Vaihingen dataset contains 33 images
with an average size of 2494 × 2064 pixels and a ground
sampling distance (GSD) of 9 cm. Each image contains three
multispectral bands (near-infrared, red, and green) as well
as a digital surface model (DSM) and a normalized digital
surface model (NDSM). The dataset includes five foreground
classes (impervious surfaces, buildings, low vegetation, trees,
and cars) and one background class (clutter). Specifically,
images numbered 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, and
33(12 images in total) are selected for testing, image number
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Fig. 9. Mapping results for the test images of Vaihingen numbered 28 and 31.

30 is applied for validation, and the remaining 20 images are
utilized for training. The images are cropped into small patches
of 256× 256 pixels.

2) Potsdam: The Potsdam dataset contains 38 fine-
resolution images of 6000 × 6000 pixels (GSD 5 cm) and
the same category information as the Vaihingen dataset. The
dataset provides three multispectral bands (red, green, blue,
and near-infrared), as well as DSM and NDSM. In our
experiments, images numbered 2_13, 2_14, 3_13, 3_14, 4_13,
4_14, 4_15, 5_13, 5_14, 5_15, 6_13, 6_14, 6_15, and 7_13
(14 images in total) are utilized for testing, image number
2_10 is employed for validation, and the remaining 22 images
(excluding image 7_10 with incorrect annotations) are applied
for training. Only the red, green, and blue bands are utilized
in the experiment, and the original image blocks are cropped
into small patches of 256× 256 pixels.

B. Experimental Setting

The hardware conditions of the experiment were an AMD
Ryzen Thread Ripper 3990X 64-Core Processor CPU, a main

frequency of 2.90 GHz, a dynamic acceleration frequency of
4.3 GHz, 64GB of RAM, an NVIDIA Quadro RTX 8000 GPU,
and 48 GB of graphics memory. The software environment
adopts PyTorch 1.7 as the development framework and runs in
Ubuntu 18.04 and Python 3.8 environments. For each method,
the overall accuracy (OA), mean crossover ratio (mIoU), and
F1-score (F1) are selected as evaluation indices.

C. Comparison With Other Methods

To verify the effectiveness of the proposed PEEN model,
we compare our method with other classical approaches,
including the FCN [31], BiseNet [75], DANet [64],
Deeplabv3+ [38], PSPNet [63], BoTNet [65], BANet [66],
Segmenter [47], UNetFormer [67], IDRNet [68], and
SfNet [69]. Additionally, we evaluate our model with the
edge-enhanced semantic segmentation networks, including the
SGFNet [70], BDNet [71], and FBRNet [72].

1) Comparison With Other Methods on the Vaihingen
Dataset: Table I reports the experimental quantitative com-
parison results on the Vaihingen dataset. The OA, mF1, and
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Fig. 10. Mapping results for the test images of Potsdam numbered 2_13 and 3_13.

mIoU of the proposed PEEN achieve the highest values of
91.63%, 92.83%, and 85.54%, respectively. Compared to the
UNetFormer model, which has the highest F1-score for the car
category among the comparison models, PEEN improves by
1.56%. Compared with the edge-enhancement-based models
SGFNet, BDNet, and FBRNet, the mIoU of PEEN is higher
than the three methods, which demonstrates the significant
effectiveness of the PEEN model on small targets and edges.

Fig. 7 illustrates the visualization results on the Vaihin-
gen dataset with the magnified segmentation details, which
specifically highlights the building category in a red rect-
angle. As observed, the segmentation results of the PEEN
model exhibit the closest alignment with GT, characterized by
intact structural contours and sharply defined boundaries. The
visualization results on the Potsdam dataset with the enlarged
visualization of the segmentation results are shown in Fig. 8.
The red box in the figure highlights partial regions of the back-
ground categories. As observed, the FCN and BiseNet classify
the target as an impervious surface category. In contrast, the
PEEN model accurately identifies the background class, which
is the most complete and closest to the GT image.

2) Comparison With Other Methods on the Potsdam
Dataset: For the Potsdam dataset, the compared results are
shown in Table II. As can be observed, our PEEN model
achieves the mean F1-score of 92.99% and an mIoU of
88.35%. Compared with the comparative models SGFNet,
BDNet, and FBRNet based on edge enhancement, the PEEN
model achieves improvements of at least 0.37%, 1.06%, and
2.72%, respectively. The results indicate that the proposed

Fig. 11. Influence of different k and n values in the IM on mIoU.

PEEN method demonstrates greater effectiveness than other
edge-based approaches and achieves superior performance in
blurred edges.

Additionally, Fig. 9 presents full-image segmentation results
for sample Nos. 28 and 31, which further illustrate the
consistent performance across diverse scene contexts. All the
segmentation result images validate the ability of PEEN to
maintain effective segmentation on local edge details and
global scene structure. Moreover, Fig. 10 presents full-image
segmentation results for the samples of 2_13 and 3_13 of the
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Fig. 12. Visualization of segmentation at edges during iteration.

Potsdam dataset. The qualitative results demonstrate that the
PEEN model effectively segments both the local edge details
and the complete structure of objects.

D. Ablation Study

We conducted ablation experiments to validate the effective-
ness of the Conv SA mechanism and the IPEP module in our
network. Notably, in the implementation without Conv SA,
we replace it with traditional 3 × 3 convolutions. The exper-
imental results are shown in Table III. From the data in the

table, it can be observed that both proposed modules contribute
to improvements in various evaluation metrics. Specifically,
the incorporation of Conv SA leads to an improvement of
4.76% and 3.11% in mIoU values compared to utilizing
standard 3 × 3 convolutions on the Vaihingen and Potsdam
datasets, respectively. Furthermore, the combination of the
IPEP module with the model enhanced mIOU values when
either 3 × 3 convolution or Conv SA was employed. Conse-
quently, both the long-range information extraction capability
of Conv SA and the edge enhancement capability of the
IPEP module benefit the PEEN model. Conv SA improves
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Fig. 13. Comparison of visualized feature maps extracted by a CNN with 3× 3 convolutional kernels and Conv SA with different kernel sizes.

TABLE III
ABLATION STUDY OF EACH COMPONENT OF THE MODEL

the segmentation of occluded objects, while the IPEP module
strengthens edge segmentation effectiveness.

E. Parameter Optimization and Experimental Analysis

1) Influence of Different α and n values in the IM: In
this section, we conduct experiments to examine the impact
of different values of α during iterations and explore the
relationship between semantic segmentation performance and
the number of iterations n. The experiments are conducted
on the Vaihingen dataset without any additional pretraining.
During training, we randomly cropped regions of the RSI
and resized them to 256 × 256. The PEEN model is trained
for 200 iterations with a batch size of 8. Fig. 11 presents
some representative experimental results. It is evident that
the mIoU value consistently increases with an increasing n.
The mIOU value reaches the peak and starts to stabilize
around n = 5. Additionally, we observe that the approach
with the setting of k = 3 yielded the best performance after
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Fig. 14. Influence of convolution kernel size in Conv SA on mIoU.

five iterations. Consequently, for all subsequent experiments,
we set the number of iterations for the IM to 5 and the
corresponding k value to 3. The α values were selected from
the set {1, 4, 7, 10, 13}. Additionally, as depicted in Fig. 12,
we visualize the details of local edges during the iterative
process; it is obvious that there is a gradual improvement in
edge accuracy with increasing iterations.

2) Influence of the Kernel Size in Conv SA: The Conv SA
employs variable-sized convolutional kernels. In this section,
we analyze the impact of different kernel sizes on the seg-
mentation results. The experiments are conducted on the
Vaihingen dataset without any additional pretraining. During
training, we randomly crop the RSI regions and resize them
to 256 × 256 and then train the model for 200 epochs
with a batch size of 8. Fig. 13 illustrates a comparative
visualization of local feature maps. Our Conv SA exhibits
superior feature extraction capabilities compared to traditional
3 × 3 convolutions. Particularly, when utilizing a 15 × 15
kernel size, the extracted feature maps demonstrate the highest
level of clarity and resolution, while also preserving a greater
amount of fine-grained details. As illustrated in Fig. 14, the
mIOU value of the PEEN model demonstrates an almost
linear increase as the kernel size expands. Nevertheless, after
reaching a kernel size of 15, further increasing the kernel size
does not significantly improve the mIOU value. Therefore,
for the sake of model efficiency, the kernel size is set to
15× 15 for all other experiments in this article. Furthermore,
we conduct visualization experiments to compare the feature
maps extracted by the Conv SA mechanism with different
kernel sizes (7×7, 11×11, and 15×15) with those extracted
by a CNN containing 3× 3 convolutional kernels.

3) Influence of Asymmetric Convolution Kernel Size: In
this section, we compare the effect of different convolution
kernel sizes for asymmetric convolution in IM on the per-
formance of the PEEN model. The compared convolutional
kernel combinations are (1 × 3, 3 × 1), (1 × 5, 5 × 1),
and (1 × 7, 7 × 1). The experiments are conducted on the
Vaihingen dataset without any additional pretraining, and the
results are shown in Fig. 15. As shown, the PEEN model

Fig. 15. Influence of the size of asymmetric convolution kernel in the IM
on mIoU.

Fig. 16. Influence of utilizing PFs or Canny in the IPEP module on mIoU.

achieves an mIoU value of 85.54%, which is higher than the
set of (1 × 5, 5 × 1) combination and the set of (1 × 7,
7 × 1) combination. In the other experiments, the asymmetric
convolutional kernels are configured by the default setting of
(1 × 3, 3 × 1).

4) Effectiveness of PF: During the training stage in this
article, we calculate the difference between the predicted edges
and the actual edges in the GT images. Since the edges
of the GT images are straightforward to compute, we can
theoretically use any edge detection operator, such as the
Canny operator, the Sobel operator, or PF, to achieve similar
results. In our implementation, we opted for the simple, yet
effective Canny operator in the IPEP module.

To verify the effectiveness of PF and the Canny operator
in edge prediction, we replace PF with the Canny operator
to conduct experiments in this section. The experiments are
conducted on the Vaihingen dataset without any additional
pretraining. The experimental results are shown in Fig. 16.
We evaluate the performance utilizing mIoU values and com-
pare the results obtained after applying a single iteration of
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TABLE IV
COMPARISON RESULTS OF PEEN AND COMPARISON MODELS IN COMPLEXITY AND INFERENCE SPEED

TABLE V
COMPARISON RESULTS BETWEEN CONV SA AND OTHER COMMON ATTENTION MECHANISMS

reinforcement learning with PF and Canny operators. Overall,
the mIoU values exhibit a positive correlation with the iteration
count n in both methods. Nevertheless, the mIoU values
obtained with the Canny operator are significantly lower than
those achieved with a single application of PF. Even after
performing five iterations employing the Canny operator, the
mIoU value is not as high as that obtained with PF after
a single iteration. Specifically, with one iteration, the mIoU
value obtained with PF reaches 83.14%, while that obtained
with Canny is 81.18%. After five iterations employing Canny,
the mIoU value increases to 83.14%, which is still lower
than the mIoU value obtained with PF after one iteration.
Overall, our PF improves the accuracy of edge segmentation
by converting pixel-edge distances into probabilities of pixels
belonging to edges, using different α values in each iteration
to reinforce this process. Compared to the Canny algorithm,
which detects edges using pixel thresholds, our approach is
clearly more effective.

5) Comparison of Network Efficiency: In this section,
we compare the network efficiency of the PEEN and the
comparison networks in terms of mIoU, parameters, and speed.
The experiments are performed on the Vaihingen and Potsdam
datasets, respectively. The results are shown in Table IV.
As observed, with an input image size of 256 × 256, the PEEN
model achieves a parameter count of 50.47 M and an inference
speed of 108.56 FPS, which is generally comparable to other
nonlightweight models. Additionally, our model demonstrates
superior segmentation performance, achieving mIoU values of

85.54% on the Vaihingen dataset and 88.35% on the Potsdam
dataset.

6) Comparison of Conv SA With Other Common Attention
Mechanisms: To verify the effectiveness of Conv SA, a com-
prehensive comparison was conducted with other common
attention modules in this section. The compared atten-
tion mechanisms included SE [76], CBAM [77], CA [78],
GAM [79], and EMA [80]. The experiments were carried
out based on the Vaihingen dataset, and the experimental
setups were all the same. The experimental results are pre-
sented in Table V, and the bolded values indicate the optimal
experimental results. As observed, our proposed mechanism
achieved superior performance compared to other approaches
with the mF1 of 91.63%, OA of 92.83%, and mIoU of 85.54%,
respectively. The experimental results convincingly illustrate
that Conv SA is valuable to incorporate spatial context infor-
mation into RSIs during the information acquisition process.
The mentioned integration effectively promotes the crucial
feature representation and alleviates the challenges associated
with edges and small target recognition.

V. CONCLUSION

In this article, we propose a novel idea that maps the
distance between pixels and edges to probabilities and con-
structs an encoder–decoder structure PEEN model for efficient
SSRSIs. Specifically, since global context information is cru-
cial for occluded object segmentation, we designed the Conv
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SA mechanism to extract long-distance-dependent informa-
tion in RSIs. For enhancing the segmentation performance
at the edges, we propose the IPEP module that utilizes PF
to iteratively enhance the segmentation at the boundaries of
the target, ultimately achieving precise results for SSRSIs.
A comprehensive set of comparative studies, such as ablation
and parameter optimization studies on the ISPRS Vaihingen
and Potsdam datasets, demonstrated the effectiveness and
efficiency of the proposed network for SSRSIs.

In the future, we plan to establish efficient deep learn-
ing architectures for the SSRSI to reduce computational
complexity and memory requirements. With the lightweight
implementation, the semantic segmentation models are ideally
implemented in resource-constrained environments, that is,
mobile devices or remote computing platforms. Additionally,
by providing timely decision support, lightweight seman-
tic segmentation networks are essential for real-time remote
sensing monitoring, which has substantial applications in the
fields of agricultural monitoring, environmental protection, and
urban planning.

REFERENCES

[1] L. Zhang and L. Zhang, “Artificial intelligence for remote sensing
data analysis: A review of challenges and opportunities,” IEEE Geosci.
Remote Sens. Mag., vol. 10, no. 2, pp. 270–294, Jun. 2022.

[2] C. Yu, Y. Zhu, Y. Wang, E. Zhao, Q. Zhang, and X. Lu, “Concern with
center-pixel labeling: Center-specific perception transformer network for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 63, 2025, Art. no. 5514614.

[3] A. Milioto, P. Lottes, and C. Stachniss, “Real-time semantic segmen-
tation of crop and weed for precision agriculture robots leveraging
background knowledge in CNNs,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2018, pp. 2229–2235.

[4] A. Alzu’bi and L. Alsmadi, “Monitoring deforestation in Jordan using
deep semantic segmentation with satellite imagery,” Ecological Infor-
mat., vol. 70, Sep. 2022, Art. no. 101745.

[5] B. Neupane, T. Horanont, and J. Aryal, “Deep learning-based semantic
segmentation of urban features in satellite images: A review and meta-
analysis,” Remote Sens., vol. 13, no. 4, p. 808, Feb. 2021.

[6] G. Libessart, C. Franck-Néel, P. Branchu, and C. Schwartz, “The human
factor of pedogenesis described by historical trajectories of land use:
The case of Paris,” Landscape Urban Planning, vol. 222, Jun. 2022,
Art. no. 104393.

[7] Y. Pi, N. D. Nath, and A. H. Behzadan, “Detection and semantic
segmentation of disaster damage in UAV footage,” J. Comput. Civil
Eng., vol. 35, no. 2, Mar. 2021, Art. no. 04020063.

[8] T. Chowdhury, M. Rahnemoonfar, R. Murphy, and O. Fernandes, “Com-
prehensive semantic segmentation on high resolution UAV imagery for
natural disaster damage assessment,” in Proc. IEEE Int. Conf. Big Data
(Big Data), Dec. 2020, pp. 3904–3913.

[9] S. Hao, Y. Zhou, and Y. Guo, “A brief survey on semantic segmen-
tation with deep learning,” Neurocomputing, vol. 406, pp. 302–321,
Sep. 2020.

[10] Y. Mo, Y. Wu, X. Yang, F. Liu, and Y. Liao, “Review the state-of-
the-art technologies of semantic segmentation based on deep learning,”
Neurocomputing, vol. 493, pp. 626–646, Jul. 2022.

[11] K. A. García-Pardo, D. Moreno-Rangel, S. Domínguez-Amarillo, and
J. R. García-Chávez, “Remote sensing for the assessment of ecosystem
services provided by urban vegetation: A review of the methods applied,”
Urban Forestry Urban Greening, vol. 74, Aug. 2022, Art. no. 127636.

[12] C. M. Viana, S. Oliveira, S. C. Oliveira, and J. Rocha, “Land use/land
cover change detection and urban sprawl analysis,” in Spatial Modeling
in GIS and R for Earth and Environmental Sciences, H. R. Pourghasemi
and C. Gokceoglu, Eds., Amsterdam, The Netherlands: Elsevier, 2019,
pp. 621–651.

[13] M. Krichen, M. S. Abdalzaher, M. Elwekeil, and M. M. Fouda,
“Managing natural disasters: An analysis of technological advancements,
opportunities, and challenges,” Internet Things Cyber-Phys. Syst., vol. 4,
pp. 99–109, Jan. 2024.

[14] S. A. Hojjatoleslami and J. Kittler, “Region growing: A new approach,”
IEEE Trans. Image Process., vol. 7, no. 7, pp. 1079–1084, Jul. 1998.

[15] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient N–D image seg-
mentation,” Int. J. Comput. Vis., vol. 70, no. 2, pp. 109–131, Nov. 2006.

[16] G. R. Cross and A. K. Jain, “Markov random field texture models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-5, no. 1, pp. 25–39,
Jan. 1983.

[17] J. Wu, “Introduction to convolutional neural networks,” Nat. Key Lab
Novel Softw. Technol., vol. 5, no. 23, p. 495, 2017.

[18] X. Wang, Z. Hu, S. Shi, M. Hou, L. Xu, and X. Zhang, “A deep
learning method for optimizing semantic segmentation accuracy of
remote sensing images based on improved UNet,” Sci. Rep., vol. 13,
no. 1, p. 7600, May 2023.

[19] Q. Zeng, J. Zhou, J. Tao, L. Chen, X. Niu, and Y. Zhang,
“Multiscale global context network for semantic segmentation of high-
resolution remote sensing images,” IEEE Trans. Geosci. Remote Sens.,
vol. 62, 2024, Art. no. 5622913.

[20] Y. Su, L. Gao, A. Plaza, X. Sun, M. Jiang, and G. Yang, “SRViT:
Self-supervised relation-aware vision transformer for hyperspectral
unmixing,” IEEE Trans. Neural Netw. Learn. Syst., early access, Jun.
2025, doi: 10.1109/TNNLS.2025.3571798.

[21] X. Li et al., “A synergistical attention model for semantic segmentation
of remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 61,
2023, Art. no. 5400916.

[22] Y. Liu, Y. Zhang, Y. Wang, and S. Mei, “Rethinking transformers for
semantic segmentation of remote sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 61, 2023, Art. no. 5617515.

[23] P.-T. Jiang, Y. Yang, Q. Hou, and Y. Wei, “L2G: A simple local-to-
global knowledge transfer framework for weakly supervised semantic
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 16886–16896.

[24] X. Li et al., “Improving semantic segmentation via decoupled body
and edge supervision,” in Proc. Eur. Conf. Comput. Vis., Glasgow, U.K.
Cham, Switzerland: Springer, 2020, pp. 435–452.

[25] D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu,
and U. Stilla, “Classification with an edge: Improving semantic image
segmentation with boundary detection,” ISPRS J. Photogramm. Remote
Sens., vol. 135, pp. 158–172, Jan. 2018.

[26] H. Jung, H.-S. Choi, and M. Kang, “Boundary enhancement semantic
segmentation for building extraction from remote sensed image,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5215512.

[27] W. Rong, Z. Li, W. Zhang, and L. Sun, “An improved Canny edge
detection algorithm,” in Proc. IEEE Int. Conf. Mechatronics Autom.,
Aug. 2014, pp. 577–582.

[28] W. Gao, X. Zhang, L. Yang, and H. Liu, “An improved Sobel edge
detection,” in Proc. 3rd Int. Conf. Comput. Sci. Inf. Technol., Jul. 2010,
pp. 67–71.

[29] X. Ma, X. Zhang, and M.-O. Pun, “A crossmodal multiscale fusion
network for semantic segmentation of remote sensing data,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 3463–3474, 2022.

[30] A. Abdollahi and B. Pradhan, “Integrating semantic edges and segmenta-
tion information for building extraction from aerial images using UNet,”
Mach. Learn. Appl., vol. 6, Dec. 2021, Art. no. 100194.

[31] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[32] R. Kemker, C. Salvaggio, and C. Kanan, “Algorithms for semantic seg-
mentation of multispectral remote sensing imagery using deep learning,”
ISPRS J. Photogramm. Remote Sens., vol. 145, pp. 60–77, Nov. 2018.

[33] I. Kotaridis and M. Lazaridou, “Remote sensing image segmentation
advances: A meta-analysis,” ISPRS J. Photogramm. Remote Sens.,
vol. 173, pp. 309–322, Mar. 2021.

[34] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep
learning in remote sensing applications: A meta-analysis and review,”
ISPRS J. Photogramm. Remote Sens., vol. 152, pp. 166–177, Jun. 2019.

[35] X.-Y. Tong et al., “Land-cover classification with high-resolution remote
sensing images using transferable deep models,” Remote Sens. Environ.,
vol. 237, Feb. 2020, Art. no. 111322.

[36] Y. Hua, D. Marcos, L. Mou, X. X. Zhu, and D. Tuia, “Semantic
segmentation of remote sensing images with sparse annotations,” IEEE
Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.

[37] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. 18th Int. Conf.
Med. Image Comput. Comput.-Assist. Intervent., vol. 9351. Cham,
Switzerland: Springer, 2015, pp. 234–241.

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on July 27,2025 at 01:53:40 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2025.3571798


5519717 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

[38] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder–decoder with Atrous separable convolution for semantic
image segmentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 801–818.

[39] Y. Sun, Y. Tian, and Y. Xu, “Problems of encoder–decoder frame-
works for high-resolution remote sensing image segmentation: Struc-
tural stereotype and insufficient learning,” Neurocomputing, vol. 330,
pp. 297–304, Feb. 2019.

[40] F. I. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu, “ResUNet-
A: A deep learning framework for semantic segmentation of remotely
sensed data,” ISPRS J. Photogramm. Remote Sens., vol. 162, pp. 94–114,
Apr. 2020.

[41] K. Yue, L. Yang, R. Li, W. Hu, F. Zhang, and W. Li, “TreeUNet:
Adaptive tree convolutional neural networks for subdecimeter aerial
image segmentation,” ISPRS J. Photogramm. Remote Sens., vol. 156,
pp. 1–13, Oct. 2019.

[42] Z. Zhou, M. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++:
A nested U-Net architecture for medical image segmentation,” in Proc.
Int. Workshop Deep Learn. Med. Image Anal., vol. 11045. Cham,
Switzerland: Springer, 2018, pp. 3–11.

[43] Y. Liu, B. Fan, L. Wang, J. Bai, S. Xiang, and C. Pan, “Semantic labeling
in very high resolution images via a self-cascaded convolutional neural
network,” ISPRS J. Photogramm. Remote Sens., vol. 145, pp. 78–95,
Nov. 2018.

[44] W. Zhao, S. Du, Q. Wang, and W. J. Emery, “Contextually guided very-
high-resolution imagery classification with semantic segments,” ISPRS
J. Photogramm. Remote Sens., vol. 132, pp. 48–60, Oct. 2017.

[45] Y. Shen, J. Chen, L. Xiao, and D. Pan, “Optimizing multiscale seg-
mentation with local spectral heterogeneity measure for high resolution
remote sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 157,
pp. 13–25, Nov. 2019.

[46] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers
for image recognition at scale,” 2020, arXiv:2010.11929.

[47] R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter: Trans-
former for semantic segmentation,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2021, pp. 7262–7272.

[48] E. Xie et al., “SegFormer: Simple and efficient design for semantic
segmentation with transformers,” in Proc. Adv. Neural Inf. Process. Sys.
(NIPS), vol. 34, Dec. 2021, pp. 12077–12090.

[49] H. Cao et al., “Swin-Unet: Unet-like pure transformer for medical image
segmentation,” in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, Jan. 2021, pp. 205–218.

[50] Q. Wang, X. Jin, Q. Jiang, L. Wu, Y. Zhang, and W. Zhou, “DBCT-
Net: A dual branch hybrid CNN-transformer network for remote sensing
image fusion,” Expert Syst. Appl., vol. 233, Dec. 2023, Art. no. 120829.

[51] Y. Liu et al., “A transformer-based multi-modal fusion network for
semantic segmentation of high-resolution remote sensing imagery,” Int.
J. Appl. Earth Observ. Geoinf., vol. 133, Sep. 2024, Art. no. 104083.

[52] W. Miao, Z. Xu, J. Geng, and W. Jiang, “ECAE: Edge-aware class acti-
vation enhancement for semisupervised remote sensing image semantic
segmentation,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 5625014.

[53] B. Sui, Y. Cao, X. Bai, S. Zhang, and R. Wu, “BIBED-seg: Block-in-
block edge detection network for guiding semantic segmentation task of
high-resolution remote sensing images,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 16, pp. 1531–1549, 2023.

[54] J. Wu, C. Qin, Y. Ren, and G. Feng, “EPFNet: Edge-prototype
fusion network toward few-shot semantic segmentation for aerial
remote-sensing images,” IEEE Geosci. Remote Sens. Lett., vol. 20,
pp. 1–5, 2023.

[55] X. Sun, A. Shi, H. Huang, and H. Mayer, “BAS4net: Boundary-aware
semi-supervised semantic segmentation network for very high resolution
remote sensing images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 13, pp. 5398–5413, 2020.

[56] A. Li, L. Jiao, H. Zhu, L. Li, and F. Liu, “Multitask semantic boundary
awareness network for remote sensing image segmentation,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5400314.

[57] X. Sun, M. Xia, and T. Dai, “Controllable fused semantic segmentation
with adaptive edge loss for remote sensing parsing,” Remote Sens.,
vol. 14, no. 1, p. 207, Jan. 2022.

[58] C. He, S. Li, D. Xiong, P. Fang, and M. Liao, “Remote sensing image
semantic segmentation based on edge information guidance,” Remote
Sens., vol. 12, no. 9, p. 1501, May 2020.

[59] G. P. H. Styan, “Hadamard products and multivariate statistical analysis,”
Linear Algebra Appl., vol. 6, pp. 217–240, Jan. 1973.

[60] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[61] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Los Alamitos, CA, USA, Jul. 2017,
pp. 5987–5995.

[62] C.-H. Tsai, Y.-T. Chih, W. H. Wong, and C.-Y. Lee, “A hardware-
efficient sigmoid function with adjustable precision for a neural network
system,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 11,
pp. 1073–1077, Nov. 2015.

[63] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Los Alamitos, CA, USA, Jul. 2017, pp. 6230–6239.

[64] J. Fu et al., “Dual attention network for scene segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 3141–3149.

[65] A. Srinivas, T.-Y. Lin, N. Parmar, J. Shlens, P. Abbeel, and A. Vaswani,
“Bottleneck transformers for visual recognition,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Los Alamitos, CA, USA,
Jun. 2021, pp. 16514–16524.

[66] L. Wang, R. Li, D. Wang, C. Duan, T. Wang, and X. Meng, “Trans-
former meets convolution: A bilateral awareness network for semantic
segmentation of very fine resolution urban scene images,” Remote Sens.,
vol. 13, no. 16, p. 3065, Aug. 2021.

[67] L. Wang et al., “UNetFormer: A UNet-like transformer for effi-
cient semantic segmentation of remote sensing urban scene imagery,”
ISPRS J. Photogramm. Remote Sens., vol. 190, pp. 196–214,
Aug. 2022.

[68] Z. Jin, X. Hu, L. Zhu, L. Song, Y. Li, and L. Yu, “IDRNet: Intervention-
driven relation network for semantic segmentation,” in Proc. Adv. Neural
Inf. Process. Syst., Jan. 2023, pp. 51606–51620.

[69] X. Li et al., “Sfnet: Faster and accurate semantic segmentation via
semantic flow,” Int. J. Comput. Vis., vol. 132, no. 2, pp. 466–489,
Feb. 2024.

[70] Y. Wang, G. Li, and Z. Liu, “SGFNet: Semantic-guided fusion
network for RGB-thermal semantic segmentation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 33, no. 12, pp. 7737–7748,
Dec. 2023.

[71] X. Li, L. Xie, C. Wang, J. Miao, H. Shen, and L. Zhang,
“Boundary-enhanced dual-stream network for semantic segmentation
of high-resolution remote sensing images,” GIScience Remote Sens.,
vol. 61, no. 1, Dec. 2024, Art. no. 2356355.

[72] S. Qu, Z. Wang, J. Wu, and Y. Feng, “FBRNet: A feature fusion and
border refinement network for real-time semantic segmentation,” Pattern
Anal. Appl., vol. 27, no. 1, p. 2, Mar. 2024.

[73] T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute
error (MAE): When to use them or not,” Geoscientific Model Develop.,
vol. 15, no. 14, pp. 5481–5487, Jul. 2022.

[74] F. Milletari, N. Navab, and S. Ahmadi, “V-Net: Fully convolutional
neural networks for volumetric medical image segmentation,” in Proc.
4th Int. Conf. 3D Vis. (3DV), Oct. 2016, pp. 565–571.

[75] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang,
“BiseNet: Bilateral segmentation network for real-time semantic seg-
mentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018,
pp. 325–341.

[76] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[77] S. Woo, J. Park, J. Lee, and I. S. Kweon, “CBAM: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Jan. 2018,
pp. 3–19.

[78] Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for efficient
mobile network design,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 13713–13722.

[79] Y. Liu, Z. Shao, and N. Hoffmann, “Global attention mechanism:
Retain information to enhance channel-spatial interactions,” 2021,
arXiv:2112.05561.

[80] D. Ouyang et al., “Efficient multi-scale attention module with cross-
spatial learning,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Jun. 2023, pp. 1–5.

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on July 27,2025 at 01:53:40 UTC from IEEE Xplore.  Restrictions apply. 



YU et al.: PROBABILITY-GUIDED EDGE ENHANCEMENT NETWORK FOR RSI SEMANTIC SEGMENTATION 5519717

Chunyan Yu (Senior Member, IEEE) received the
Ph.D. degree in environmental engineering from
Dalian Maritime University, Dalian, China, in 2012.

She is currently an Associate Professor at the
Information Science and Technology College, Dalian
Maritime University. Her research interests include
image segmentation, hyperspectral image classifica-
tion, and pattern recognition.

Yakun Zuo received the bachelor’s degree in elec-
tronic information science and technology from
Henan Agricultural University, Zhengzhou, China,
in 2020. He is currently pursuing the master’s degree
in software engineering at Dalian Maritime Univer-
sity, Dalian, China.

His research interests include remote sensing
image processing and deep learning.

Qiang Zhang (Member, IEEE) received the B.E.
degree in surveying and mapping engineering and
the M.E. and Ph.D. degrees in photogrammetry
and remote sensing from Wuhan University, Wuhan,
China, in 2017, 2019, and 2022, respectively.

He is currently an Associate Professor with the
Center of Hyperspectral Imaging in Remote Sens-
ing (CHIRS), Information Science and Technology
College, Dalian Maritime University, Dalian, China.
He has authored more than ten journal articles
in IEEE TRANSACTIONS ON IMAGE PROCESSING

(TIP), IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
(TGRS), Earth System Science Data, and ISPRS Journal of Photogrammetry
and Remote Sensing. His research interests include remote sensing informa-
tion processing, computer vision, and machine learning. More details could
be found at https://qzhang95.github.io

Yulei Wang (Member, IEEE) received the B.S. and
Ph.D. degrees in signal and information processing
from Harbin Engineering University, Harbin, China,
in 2009 and 2015, respectively.

In 2011, she was awarded by China Scholarship
Council to study at the Remote Sensing Signal and
Image Processing Laboratory, University of Mary-
land, Baltimore, MD, USA, as a joint Ph.D. Student
for two years. She is an Associate Professor with the
Hyperspectral Imaging in Remote Sensing (CHIRS),
Information Science and Technology College, Dalian

Maritime University, Dalian, China. Her research interests include hyperspec-
tral image processing and vital signs signal processing.

Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on July 27,2025 at 01:53:40 UTC from IEEE Xplore.  Restrictions apply. 


