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Abstract— Model-driven methods and data-driven methods
have been widely developed for hyperspectral image (HSI)
denoising. However, there are pros and cons in both model-
driven and data-driven methods. To address this issue,
we develop a self-supervised HSI denoising method via inte-
grating model-driven with data-driven strategy. The proposed
framework simultaneously cooperates the spectral low-rankness
prior and deep spatial prior (SLRP-DSP) for HSI self-supervised
denoising. SLRP-DSP introduces the Tucker factorization via
orthogonal basis and reduced factor, to capture the global
spectral low-rankness prior in HSI. Besides, SLRP-DSP adopts a
self-supervised way to learn the deep spatial prior. The proposed
method doesn’t need a large number of clean HSIs as the
label samples. Through the self-supervised learning, SLRP-DSP
can adaptively adjust the deep spatial prior from self-spatial
information for reduced spatial factor denoising. An alternating
iterative optimization framework is developed to exploit the
internal low-rankness prior of third-order tensors and the spatial
feature extraction capacity of convolutional neural network.
Compared with both existing model-driven methods and data-
driven methods, experimental results manifest that the proposed
SLRP-DSP outperforms on mixed noise removal in different noisy
HSIs.

Index Terms— Hyperspectral, denoising, self-supervised, spec-
tral low-rankness prior, deep spatial prior, alternating iterative
optimization.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) simultaneously captures
the spatial and spectral information of the observed

objects [1]. Through the wide and dense spectral feature, HSI
can better distinguish the physical differences between various
surface materials, compared with natural image[2]. Therefore,
HSI has been widely put into practice such as classification,
object detection, anomaly detection and the like [3].
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However, everything has two sides including HSI. Due
to the atmospheric interference, sensor tremor and signal
response, almost all of the acquired HSIs are inevitably
polluted by various noise to different degrees [4]. The noise
types include Gaussian noise, Poisson noise, pepper noise,
stripe noise, and mixed noise. What’s worse, the noise level
and type usually vary in different bands of noisy HSIs [5].

To address this noise pollution issue in HSI, plenty of
HSI denoising works have been presented during last twenty
years [6], [7], [8]. Different from natural image denoising, HSI
denoising task needs to simultaneously consider the spectral
feature preservation and remove the mixed noise [9]. What’s
more, the complementary and redundant spectral information
can be effectively utilized for enhancing the HSI denoising
results [10]. Therefore, spectral-spatial based methods for HSI
denoising have gradually become the mainstream strategy
[11], [12]. From the perspective of thoughts, most HSI
denoising methods could be generally split into two categories:
1) Model-driven HSI denoising methods, and 2) data-driven
HSI denoising methods. Specific literatures and evaluations of
the two type methods are given as follows.

1) Model-driven HSI denoising methods: Model-driven
methods mainly utilize the intrinsic characteristics of HSI
and variational framework, to remove the mixed noise in
HSI. Up to now, total variation (TV) [13], [14], [15], non-
local prior [16], sparse representation [17], [18], [19], and
low-rank matrix or tensor factorization [20], [21], [22], [23],
[24], [25] have been applied for this field. For example,
Maggioni et al. [16] stacked the non-local cubes in 4D trans-
form groups for processing volumetric data. Peng et al. [26]
simultaneously considered the spatial non-local similarity and
the spectral consistency, to remove the additive noise in HSI.
Zhang et al. [20] transformed the HSI recovery task into
the low-rank matrix factorization, through unfolding the 3D
spatio-spectral cube into the 2D matrix. Further, He et al. [21]
integrated the TV term with low-rank matrix representation,
and performed well on spatial details preserving for HSI
denoising. Zhuang and Bioucas [19] united the low-rank
subspaces in HSI with self-similarity traits, which can fast
remove mixed noise and inpaint deadlines in corrupted HSI.
Zhao et al. [17] utilized the spectral-spatial redundancy and
relevant in HSI, via combining low-rank matrix and sparse
representation for HSI noise reduction.

In addition to the above methods, low-rank tensor decompo-
sition [27] has been mostly utilized for HSI denoising in recent
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years. Xie et al. [22] developed a tensor sparsity estimation
in multispectral image denoising, to constraint the internal
low-rank prior. Fan et al. [28] integrated the both spatial
and spectral TV regularization terms into the low-rank tensor
decomposition model for HSI denoising. Xiong et al. [29]
bring the L0 gradient regularization into the local spatio-
spectral low-rank tensor framework, which could simultane-
ously suppress spectral distortion and preserve spatial details
of HSI. Chen et al. [18] combined the weighted group sparsity
regularization with low-rank tensor decomposition for HSI
denoising. Zheng et al. [30] built a fibered low-rank tensor
minimizing model through ADMM optimization strategy,
to flexibly depict the structure of noisy HSI.

2) Data-driven HSI denoising methods: Differing with
model-driven methods, data-driven methods adaptively adjust
the trainable parameters from external data and label, via
deep learning framework [31], [32], [33]. Though iteratively
optimizing the deep neural network from large labeled data,
deep learning could effectively extract internal features in
assigned tasks. With the quick development of deep learning
such as convolutional neural network (CNN), it has been
rapidly utilized for natural image denoising [34] and super-
resolution [35]. Apart from nature image, deep learning is
also gradually employed in remote sensing image recovery
[36], [37], [38] and super-resolution [39], [40], [41], which
fully exploit the imaging model to improve the learn-
ing ability of CNN. For HSI denoising, several deep
learning-based literatures have also been proposed in recent
years [42], [43], [44], [45], [46], [47], [48], [49], [50].

For instance, Xie et al. [42] combined multi-layer CNN
with learnable non-linear functions to suppress noise in HSI.
Yuan et al. [43] introduced the multi-scale and multi-
level units into the spatio-spectral CNN model, to learn
the non-linear map from noisy HSI to clean HSI. Further,
Zhang et al. [44] utilized both spatial and spectral gradient
as the input terms of deep CNN, which outperformed on
mixed noise removal in HSI. Chang et al. [45] exploit multi-
channel 2D CNN filters named HSI-DeNet for HSI denoising.
Via splitting 3D CNN filters into spatial filters and spectral
filters, Dong et al. [46] relied on the original 3D U-Net
and generated training samples through RGB images for HSI
noise reduction. Wei et al. [47] developed a quasi-recurrent
3D CNN framework, which could effectively remove pol-
luted noise in HSI under multiple complicated environments.
Beyond pure data-driven strategy, Zhang et al. [48] simul-
taneously modeled the noise distribution and reduced mixed
noise in HSI through a deep Bayesian posterior structure.
It achieved reliable results for HSI denoising especially for
non-i.i.d noise.

In summary, there are pros and cons, in both model-driven
and data-driven methods for HSI denoising [51]. Model-
driven methods can accurately depict the inherent prior of
HSI, through introducing low-rank, TV, and non-local prior.
However, these model-driven HSI denoising methods have
weakness on manually crucial parameters, such as rank thresh-
old and iteration count [52]. What’s worse, most model-driven
methods usually take long consuming-time, because of the
complex iterating optimization.

In terms of the data-driven HSI denoising methods, these
methods usually perform more efficiently than model-driven
methods, without carefully adjusting model parameters [53].
Nevertheless, deep learning-based HSI denoising framework
still needs a large number of clean HSIs as the label samples.
However, the clean HSIs are actually rare and hardly obtained
in most imaging environment [54]. Except for this limitation,
the simulated noise distribution for clean HSI samples is
usually hard to agree with the actual noise distribution in
acquired noisy HSIs, because of the complicated imaging
mechanism [55]. This issue greatly affects the generality of
deep networks especially for HSI blind noise reduction.

From above-mentioned perspectives, can we jointly com-
bine the merits of model-driven with data-driven methods,
and overcome the disadvantages of the two type methods?
Aiming at this motivation, we develop a novel self-supervised
method for HSI denoising through integrating model-driven
with data-driven strategy. The main contributions of this work
are described as follows:

1) The proposed framework simultaneously cooperates
the spectral low-rankness prior and deep spatial prior
(SLRP-DSP) for HSI self-supervised denoising.

2) Through alternating iterative optimization, SLRP-DSP
can both exploit the internal low-rank prior of HSI and
spatial feature extraction capacity of CNN.

3) Different from supervised denoising methods, SLRP-
DSP adopts a self-supervised way to denoise the deep
spatial prior. The proposed SLRP-DSP needn’t a large
number of clean HSIs as label samples.

4) Compared with both existing model-driven and data-
driven HSI denoising methods, experimental results
manifest that the proposed SLRP-DSP outperforms on
mixed noise removal in different noisy HSIs.

The rest of this work is scheduled below. Section II
provides the problem formulation and describes the details
of SLRP-DSP. Section III shows the HSI denoising results
of the simulated and real experiments. Then a discussion is
given in Section IV. Finally, the conclusion and prospect are
summarized in Section V.

II. PROPOSED HSI RESTORATION MODEL

A. Notations and Definitions

Before describing the proposed method, we firstly give
the related notations and definitions in this work for better
understanding.

To distinguish data dimension, the scalar, vector, matrix
and tensor values in this work are respectively represented as
x (lowercase and italic), x (lowercase and bold), X (upper-
case and bold) and X (uppercase and Euclid math font)
formats. In terms of a third-order tensor X value, X (:, k2, k3),
X (k1, :, k3) and X (k1, k2, :) stand for the tube of tensor X
in three dimensions [56]. Besides, X(i) is denoted as the
unfolding matrix format of the third-order tensor X , with the
size of ki ×

∏
n ̸=i kn [57].

Definition 1 (Tensor-Matrix Product): In terms of a
third-order tensor X ∈ Rk1×k2×k3 and matrix A ∈ Rk3×k4 ,
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the mode-i tensor-matrix product [58] is formatted as:

Y = X ×i A ⇔ Y(i) = AX(i)

Definition 2 (Tensor Tucker Rank): In terms of a third-order
tensor X ∈ Rk1×k2×k3 , its Tucker rank [59] is denoted as:

RankT (X ) = (Rank(X(1)), Rank(X(2)), Rank(X(3)))

B. Problem Formulation

The HSI degraded procedure can be simply formulated as
the following equation:

Y = X +N (1)

where the noisy HSI Y ∈ Rk1×k2×k3 could be treated
as a third-order tensor, with the spatial size k1 × k2 and
spectral number k3. X ∈ Rk1×k2×k3 represents the clean HSI.
N ∈ Rk1×k2×k3 stands for the additive noise such as Gaussian
noise, Poisson noise, pepper noise, stripe noise, and mixed
noise in HSI.

The crucial issue for HSI denoising task is to estimate
noise-free HSI X from noisy HSI Y . Apparently, this is an
inverse problem where the known variables are less than the
unknown variables. Therefore, we need to impose suitable
priors to address this issue. Generally, a typical framework
for HSI denoising could be simplified as [60]:

arg min
X

1
2

∥Y − X∥
2
F + µ · T (X ) (2)

where T (X ) stands for the regularization term to utilize
internal HSI prior. µ is the balanced parameter of the reg-
ularization term. In consideration that HSI is regarded as a
natural third-order tensor, we can exploit the low-rankness
prior of HSI. Mathematically, a clean HSI X ∈ Rk1×k2×k3

can be approximatively factorized as two parts: a spectral
orthogonal basis matrix A ∈ Rk3×r (r ≪ k3) to capture the
common subspace in different bands, and a spatial reduced
factor B ∈ Rk1×k2×r . The global spectral low-rankness
prior in clean HSI X can be represented through Tucker
factorization:

X = B×3A (3)

where the spectral orthogonal basis matrix A captures
the communal subspace in spectral dimension. And the
spatial reduced factor B reflects spatial feature in HSI.
Though imposing the low-rank tensor factorization strategy,
the generalized HSI denoising framework in (2) could be
transformed as:

arg min
A,B

1
2

∥Y − B×3A∥
2
F + µ · T (B)

s.t. A⊤A = I (4)

where the orthogonal constraint for A boosts the representation
held in spectral factor A to be more distinct [61].

C. Proposed SLRP-DSP Model

Based on the Tucker factorization strategy in (4), we simul-
taneously cooperate the spectral low-rankness prior and deep
spatial prior (SLRP-DSP) for HSI self-supervised denoising
below:

A,B,Z = arg min
A,B,Z

1
2

∥Y − Z∥
2
F +

αβ

2
∥Z − B×3A∥

2
F

+ α ·RSL R P (Z, A) + β · TDS P (Z,B) (5)

where RSL R P (Z, A) and TDS P (Z,B) refer to the spectral
low-rankness prior and deep spatial prior, respectively. α and
β represent the balanced parameters of the two regularizations.
Z is the latent clean HSI for noisy HSI Y:

Z i+1
= arg min

Z

1
2

∥Y − Z∥
2
F +

αβ

2

∥∥∥Z − Z i
∥∥∥2

F
(6)

The flowchart of the proposed SLRP-DSP for HSI self-
supervised denoising is depicted in Fig. 1. The integral
model can be separated into three parts: 1) Spectral low-
rankness prior; 2) Deep spatial prior; 3) Alternating iterative
optimization. Descriptions of these parts are given below.

1) Spectral Low-Rankness Prior: As shown in Fig. 1,
we impose low-rank tensor factorization framework to esti-
mate the spectral orthogonal basis matrix A by updating:

Ai+1
= arg min

A
RSL R P (Z i , A) +

α

2

∥∥∥A − Ai
∥∥∥2

F
(7)

where α denotes as the proximal parameter. Ai stands for
the i-th iteration value. To approximately solve this equation,
we employ Tucker rank to exploit spectral low-rankness:

RSL R P (Z i , A) = SVDr (Zi
(3)) s.t. Ai ⊤Ai

= I (8)

where SVDr (·) denotes the interception result with Tucker
rank parameter r under matrix singular value decomposition
(SVD) economy mode. It should be highlighted that this
Tucker rank value r is far less than the band number k3 of the
latent HSI Z ∈ Rk1×k2×k3 (r ≪ k3).

For the spatial reduced factor B in Fig. 1, we estimate it
through updating the following solution:

Bi+1
= arg min

B
TDS P (Z i ,B) +

β

2

∥∥∥B − B̂i
∥∥∥2

F
(9)

After estimating the spectral orthogonal basis matrix A, the
noisy spatial reduced factor B̂ can be calculated by:

B̂i
= Z i

×3Ai⊤ (10)

where mode-3 tensor-matrix product is employed between the
latent HSI Z i and transposed spectral orthogonal basis matrix
Ai . Then (9) is transformed as:

Bi+1
= arg min

B
TDS P (Z i ,B, B̂i ) +

β

2

∥∥∥B − B̂i
∥∥∥2

F
(11)
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Fig. 1. Flowchart of the proposed SLRP-DSP for HSI self-supervised denoising.

2) Deep Spatial Prior: As described in Fig. 1, the acquired
spatial reduced factor B̂i

∈ Rk1×k2×r is usually noisy though
global spectral low-rankness prior and LRTF strategy. There-
fore, we lead in a deep spatial prior to adaptively remove
polluted noise in spatial reduced factor B̂i :

Bi
=

r
ℑ

j=1

〈
TDS P (B̂i (:, :, j))

〉
(12)

where TDS P (·) denotes the deep spatial denoiser for each band
of B̂i . We initialize the trainable network parameters of this
deep denoiser via DnCNN [34] model (blind, 17 CNN layers).
The convolutional filters in TDS P are visualized in Fig. 1.
Detailed fine-tuning operation of the deep spatial denoiser
TDS P is described in the following alternating iterative opti-
mization. ℑ ⟨·⟩ stands for the band-by-band mode for B̂i . It is
carried out through the band sequential traversal way. Then
the updated latent clean HSI Z i+1 is estimated as:

Z i+1
= Bi

×3Ai (13)

3) Alternating Iterative Optimization: According to (5), (6),
(7) and (11), the spectral low-rankness prior and deep spatial
prior are iteratively updated through alternating iterative opti-
mization. The proposed framework uses both alternating direc-
tion method of multipliers (ADMM) and back-propagation,
as shown in Fig. 1. For the deep spatial denoiser TDS P ,
we utilize the self-supervised strategy to adjust the parameters.

The self-supervised loss function ζDS P is defined as:

ζDS P =
1

2N

N∑
n=1

∥∥∥(Yp − Z i
p)n

− TDS P (Yp)n

∥∥∥2

2
(14)

where N stands for the total number of fine-tuning patch
samples. Z i

p denotes the patch samples of the latent HSI Z i ,
for the p-th epoch fine-tuning operation:

Z i
p =

k3
ℑ

j=1

〈
Patch(Z i (:, :, j))

〉
(15)

where function Patch(·) represents that we crop the holistic
band image as the small patches in the fine-tuning procedure,
through global spatial traversal operation. Then these patches
are selected as training samples for the deep spatial denoiser.
Then BP and gradient descent are employed for optimizing
the trainable parameters Wp and bp in each layer:

ζDS P
{
Wp+1, bp+1

}
= ζ

{
Wp, bp

}
+ σ ·

∂ζ

∂
{
Wp, bp

} (16)

where the self-supervised training keeps the chain rule for
updating Wp and bp. σ is the learning rate in the fine-tuning
procedure. In the next (p + 1)-th fine-tuning epoch, all the
patch samples need to be randomly reordered and resorted,
for enhancing the generalization of the deep spatial denoiser:

Z i
p+1 = Sort

k3
ℑ

j=1

〈
Z i

p(:, :, j)
〉

(17)
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Then the convergence condition of the self-supervised spa-
tial denoiser TDS P is checked by:∥∥∥TDS P (Bi ) − Bi

∥∥∥
F
/

∥∥∥Bi
∥∥∥

F
< ε (18)

where ε stands for the tiny threshold (fixed as 1e-4). If current
epoch meets this condition, we stop the fine-tuning operation
in optimizing self-supervised spatial denoiser TDS P . Other-
wise, we continue this fine-tuning operation until meeting
the convergence condition or arriving the maximum epoch.
Through the self-supervised learning strategy, the proposed
SLRP-DSP method can adaptively remove blind noise in the
spatial reduced factor B̂i via the deep spatial denoiser TDS P .

To address the integral optimization in (5), we utilize
ADMM in the proposed SLRP-DSP. The Lagrange auxiliary
multiplier Qi is introduce into the iterative framework. Then,
the latent HSI Z i in (6) could be formulated as:

Z i+1
= arg min

Z i

1
2

∥∥∥Y − Z i
∥∥∥2

F
+

1
2

∥∥∥Z i
− Bi

×3Ai
∥∥∥2

F

+ f (Bi , Ai ,Z i ,P i ) (19)

To solve (19), we can alternately update:

P i+1
= P i

+ β i
· (Bi

×3Ai
− Z i ) (20)

Z i+1
= Z i

− 1/β i
· P i+1 (21)

β i+1
= κ · β i (22)

where κ is a decay factor for penalty parameter β i . During
the alternating iterative optimization, the quality of the latent
HSI Z i is gradually improved via spectral denoising in (8)
and spatial denoising (12). Therefore, the Tucker rank value r
is substantially increased in the proposed framework:

r = min[r + f loor(η × i), k3] (23)

where η stands for the step size for updating rank r . Function
f loor(·) represents the round down operation. After each
iteration, we check the convergence condition via:∥∥∥Z i+1

− Bi
×3Ai

∥∥∥
F
/

∥∥∥Bi
×3Ai

∥∥∥
F

< ε (24)

If current result meets this convergence condition, the
denoised HSI X is finally output as:

X=Bi+1
×3Ai+1 (25)

Otherwise, we continuously perform the next alternating
iterative optimization, until meeting the convergence condition
or arriving the maximum iteration imax. The pseudocode of
the proposed SLRP-DSP for HSI self-supervised denoising is
depicted in Algorithm 1.

III. EXPERIMENTAL RESULTS

In this section, we firstly give related parameters setting of
the proposed SLRP-DSP method in Section III-A. Later, the
simulated and real HSI denoising experiments are revealed in
Section III-B and III-C, respectively.

Algorithm 1 Alternating Iterative Optimization for the
SLRP-DLP HSI Self-Supervised Denoising Method

A. Parameters Setting

In the proposed SLRP-DSP method, the initialized param-
eters of the alternating iterative optimization framework are
listed in Algorithm 1. In addition, the related parameters
setting of fine-tuning operation in deep spatial prior are given
below. The patch size of the training samples in deep spatial
prior is set as 40 × 40. The patch stride is denoted as
20 for training samples. The batch size is fixed as 128 to
accelerate fine-tuning procedure. Stochastic gradient descent
(SGD) strategy is utilized for updating the deep spatial prior.
The learning rate σ is set as 0.001.

B. Simulated HSI Denoising Experiments

In our experiments, two noise-free HSIs are employed as the
simulated data: Washington D.C. Mall HSI (outdoor data) and
CAVE Toy HSI (indoor data). W. DC Mall data is comprised
of 191 bands after discarding vapor absorption bands, from
wavelength 401nm to 2473nm by HYDICE sensor. The testing
W. DC Mall data is cropped with the size of 200 × 200 × 191
in the simulated experiments. CAVE Toy data is comprised of
31 bands from wavelength 400nm to 700nm by Cooled CCD
camera. The testing CAVE Toy data is formatted with the size
of 512 × 512 × 31 in the simulated experiments.

To validate the scene adaptation under multiple noisy
environments, we simulate four different cases for both
W. DC Mall and CAVE Toy HSI data sets. The specific
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TABLE I
EVALUATION INDEXES OF THE SIMULATED EXPERIMENTS ON THE W. DC MALL DATA SET

simulated operations of these four cases are described
as follow:

Case 1 (i.i.d. Gaussian noise): Every band in these two HSIs
is contaminated by i.i.d. Gaussian noise. For all the bands in
HSI, the variance σi of simulated Gaussian noise is equal for
each other (σi =30).

Case 2 (non-i.i.d. Gaussian noise): Every band in these two
HSIs is contaminated by non-i.i.d. Gaussian noise. In terms
of diverse bands, the variance of simulated Gaussian noise
is unequal for each other (σi ∈ [0, 75]). And it obeys the
stochastic probability distribution.

Case 3 (non-i.i.d. Gaussian noise + stripe noise): Based on
Case 2, additive stripe noise is simulated in these two HSIs,
which are simultaneously contaminated by non-i.i.d. noise.
The imposed way of stripe noise follows [62] for different
bands in W. DC Mall and CAVE Toy HSI data sets.

Case 4 (non-i.i.d. Gaussian noise + stripe noise + pepper
noise): Based on Case 3, the additive pepper noise is simulated
in these two HSIs, which are simultaneously contaminated by
non-i.i.d. noise and stripe noise in Case 3. The simulated way
of impulse noise follows [30] for different bands in the two
HSI data sets.

Besides, nine classical HSI denoising algorithms are
regarded as the comparison approaches, to validate the
reliability of the proposed framework. These approaches
include both model-driven methods: tensor dictionary learning
(TDL) [26], non-local block matching 4D data denoising
(BM4D) [16], low-rank matrix recovery (LRMR) [20], 3D
total variation (3DTV) [15], HyRes [7], non-local meet
global for HSI restoration (NGMeet) [63]. And data-driven
methods: QRNN3D [47], HSI denoising convolution neural
network (HSID-CNN) [43], spatio-spectral gradient network
(SSGN) [44].

With respect to the quantitative evaluation index for HSI
restoration, we employ three indexes in our simulated exper-
iments: mean PSNR (MPSNR), mean SSIM (MSSIM), and

mean SAM (MSAM). MPSNR and MSSIM are utilized for
evaluating the spatial recovery degree in HSI denoising.
MSAM is used for verifying the spectral perseveration degree
in HSI denoising. Generally, the higher the MPSNR/MSSIM
index and the lower MSA index are, the better the quality of
HSI restoration is. As listed in Table I and II, MPSNR, MSSIM
and MSA for each algorithm are given in the two simulated
HSI data sets and four cases, respectively. For comparisons,
the optimal index for every row is labeled as bold format in
Table I and Table II.

a) W. DC Mall data set: Table I displays the three
objective evaluation indexes (MPSNR, MSSIM and MSA)
of nine contrast algorithms, under the four noisy cases for
the W. DC Mall HSI data set. Besides, the pseudo-color
denoising results of bands (57, 27, 17) in Case 3 are pre-
sented in Fig. 2. For better distinguishing the restoration
quality, the enlarged figures for local details are also given
in Fig. 2.

As shown in Table I, the proposed method outperforms on
MPSNR, MSSIM and MSAM indexes compared with both
model-driven HSI denoising methods (TDL, BM4D, LRMR,
3DTV, HyRes, and NGMeet) and data-driven HSI denoising
methods (QRNN3D, HSID-CNN, and SSGN). In Case 3, the
proposed model can effectively eliminate the mixed noise
without obvious residual stripe noise in Fig. 2(l).

In addition, spectral preservation is extremely significant for
HSI restoration. The spectral curves of position (78, 75) in W.
DC HSI data set are also depicted in Fig. 3. For better com-
parisons, the original noise-free spectral curve is given in each
denoising result through eight contrast methods and proposed
method. As shown in Fig. 3(a)-(j), the presented SLRP-DSP
model can preserve spectral information, compared with other
HSI restoration methods.

b) CAVE Toy data set: Table II lists the three objective
evaluation indexes (MPSNR, MSSIM and MSA) of nine
contrast algorithms, under the four noisy cases for the CAVE
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TABLE II
EVALUATION INDEXES OF THE SIMULATED EXPERIMENTS ON THE CAVE TOY DATA SET

Fig. 2. Simulated denoising results for bands (57, 27, 17) of W. DC Mall HSI in Case 3.

Fig. 3. Spectral curves for position (78, 75) of W. DC Mall HSI in Case 3.

Toy HSI data set. Besides, the denoising results of 26th-band
in Case 2 are presented in Fig. 4. For better distinguishing the

restoration quality, the enlarged figures for local details are
also portrayed in Fig. 4.
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Fig. 4. Simulated denoising results for 26-th band of CAVE Toy HSI in Case 2.

TABLE III
BLIND QUALITY ASSESSMENT USING Q-METRIC IN THE REAL HSI DENOISING EXPERIMENTS

TABLE IV
RUNNING-TIMES OF DIFFERENT HSI DENOISING METHODS IN THE REAL EXPERIMENTS (UNIT: SECOND)

As shown in Table II, the proposed method outperforms
on MPSNR, MSSIM, and MSAM indexes compared with
both model-driven methods (TDL, BM4D, LRMR, 3DTV,
HyRes, and NGMeet) and data-driven methods (QRNN3D,
HSID-CNN, and SSGN). Besides, the proposed SLRP-DSP
can simultaneously remove random noise and reduce residual
artifacts in Fig. 4(l). And the spatial details are also clearly
recovered especially for the tiny textures in CAVE Toy.
In comparisons, other contrast methods exist residual noise,
or blurry issue, to different degree.

C. Real HSI Denoising Experiments

To further testify the reliability and adaptation of the
presented SLRP-DSP, four real noisy HSI data sets are
employed in our experiments: Urban (307 × 307 × 188),
Indian Pines (145 × 145 × 206), GF-5 (400 × 400 × 330),
and Zhuhai-1 (400 × 400 × 32). It should be highlighted that

these noisy HSIs exist large diversity on spatial resolution,
spectral resolution, spectral range, and scene types. And
the noise levels and types are also different between each
other.

Ten HSI denoising algorithms: TDL, BM4D, LRMR, 3DTV,
NMoG, HyRes, NGMeet, QRNN3D, HSID-CNN, and SSGN
are employed as contrasted methods. For effectively distin-
guishing the restoration quality, the enlarged figures for local
details are also given in each result. The blind quality index
Q-Metrics of the four noisy HSIs are recorded in Table III.
Meanwhile, the running-times of above methods in the real
experiments are listed in Table IV. The optimal index is
marked as bold format. The concrete results and analysis are
described as follow:

1) Urban data set: As shown in Fig. 5, the denoising results
for bands (187, 104, 24) of Urban HSI data set are listed
through ten contrast methods and proposed method. This data
set is polluted by mixed noise, included both random noise and
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Fig. 5. Real denoising results for bands (187, 104, 24) of Urban HSI.

Fig. 6. Real denoising results for bands (145, 24, 2) of Indian Pines HSI.

stripe noise. Especially for magnified regions, the presented
SLRP-DSP model outperforms on mixed noise removal and
spectral information preservation. While other methods exist
obvious residual stripe or spectral distortion in Fig. 5(b)-(k),
to different degree.

2) Indian Pines data set: As displayed in Fig. 6, the
denoising results for bands (145, 24, 2) of Indian Pines
HSI data set are listed through ten contrast methods
and proposed method. This HSI is mainly polluted by
impulse noise. Especially for the magnified regions, the
proposed SLRP-DSP method outperforms on impulse noise
removal and spectral information preservation. While other
methods exist obvious residual noise or spectral distor-
tion in Fig. 6(b)-(k), especially for deep learning-based
method.

3) GF-5 data set: As depicted in Fig. 7, the denoising
results for 193-th band of GF-5 HSI are listed through ten
contrast methods and proposed method. This data set is mainly
polluted by mixed noise, included both random noise and

TABLE V
ABLATION ANALYSIS ON FINE-TUNING STRATEGY

stripe noise. Compared with these HSI denoising methods, the
proposed framework outperforms on mixed noise removal and
spatial details recovery. While other methods generate plenty
of spatial artifacts in Fig. 7(b)-(k).

4) Zhuhai-1 data set: As shown in Fig. 8, the denoising
results for 32-th band of Zhuhai-1 HSI data set are listed
through ten contrast methods and proposed method. This
data set is mainly polluted by random noise. Especially
for the magnified regions, the proposed SLRP-DSP method
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Fig. 7. Real denoising results for 193-th band of GF-5 HSI.

Fig. 8. Real denoising results for 32-th band of Zhuhai-1 HSI.

TABLE VI
PERFORMANCE OF THE PROPOSED AND COMPARED METHODS UNDER DIFFERENT NOISE LEVELS (SAME NOISE)

outperforms on random noise removal and spatial details
recovery. Compared with both model-driven and data driven

HSI denoising methods, these experimental results magnifest
the credibility and availability of the proposed SLRP-DSP.
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IV. DISCUSSIONS

A. Ablation Analysis

In the proposed SLRP-DSP method, the self-supervised
fine-tuning strategy is utilized to adjust the convolutional
parameters in DnCNN model. Therefore, we need discuss the
significance of fine-tuning strategy for DnCNN. As listed in
Table V, the proposed method with fine-tuning strategy and
without fine-tuning for DnCNN are compared in the same
experiment (W.DC Mall, Case 3). Through the fine-tuning
strategy, the proposed method could adaptively adjust the deep
spatial denoiser for each noisy HSI. Table V demonstrates the
effectiveness of this fine-tuning strategy for HSI denoising.

B. Noise Level Analysis

To validate the performance of the proposed method and
the compared methods under different noise levels of the
same noise, we simulate three different noisy scenes for W.
DC Mall HSI. The simulated operation is described as follow:
Every band in this HSI is contaminated by the same noise
(i.i.d. Gaussian noise). For all the bands in HSI, the variance
σi of simulated Gaussian noise is equal to 30, 60 and 90.
As listed in Table VI, the proposed method outperforms on
MPSNR, MSSIM and MSAM indexes compared with both
model-driven HSI denoising methods (TDL, BM4D, LRMR,
3DTV, NMoG, and NGMeet) and data-driven HSI denoising
methods (HSID-CNN and SSGN). This discussion manifests
the stability of the proposed method under different noise
levels.

V. CONCLUSION

In this work, we develop a self-supervised HSI denoising
method via integrating model-driven strategy with data-driven
strategy. The proposed framework simultaneously cooperates
the spectral low-rankness prior and deep spatial prior (SLRP-
DSP) for HSI self-supervised denoising. Through this strategy,
SLRP-DSP can both exploit the internal low-rankness prior of
third-order tensor and the spatial feature extraction capacity
of CNN, without plenty of clean HSI training samples. Exper-
imental results demonstrate that the proposed SLRP-DSP
outperforms on mixed noise removal in different HSIs.

In our future work, we will exploit more strategy via
combing data-driven with model-driven for HSI denoising.
Besides, how to better utilize the low-rankness prior in joint
spectral and spatial dimension of HSI is also the crucial point
for HSI denoising.
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