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Abstract—Recent progress in remote sensing image (RSI)
super-resolution (SR) has exhibited remarkable performance
using deep neural networks, e.g., Convolutional Neural Networks
and Transformers. However, existing SR methods often suffer
from either a limited receptive field or quadratic computational
overhead, resulting in sub-optimal global representation and
unacceptable computational costs in large-scale RSI. To alleviate
these issues, we develop the first attempt to integrate the Vision
State Space Model (Mamba) for RSI-SR, which specializes in
processing large-scale RSI by capturing long-range dependency
with linear complexity. To achieve better SR reconstruction,
building upon Mamba, we devise a Frequency-assisted Mamba
framework, dubbed FMSR, to explore the spatial and frequent
correlations. In particular, our FMSR features a multi-level
fusion architecture equipped with the Frequency Selection Module
(FSM), Vision State Space Module (VSSM), and Hybrid Gate
Module (HGM) to grasp their merits for effective spatial-frequency
fusion. Considering that global and local dependencies are
complementary and both beneficial for SR, we further recalibrate
these multi-level features for accurate feature fusion via learnable
scaling adaptors. Extensive experiments on AID, DOTA, and DIOR
benchmarks demonstrate that our FMSR outperforms state-of-
the-art Transformer-based methods HAT-L in terms of PSNR by
0.11 dB on average, while consuming only 28.05% and 19.08% of
its memory consumption and complexity, respectively.

Index Terms—Frequency selection, remote sensing image, state
space model, super-resolution.

I. INTRODUCTION

H IGH-RESOLUTION remote sensing imagery (RSI),
which records high-quality earth observation details, pro-

vides promising prospects for large-scale and fine-grained appli-
cations [1], [2], [3], [4], [5], [6], [7], [8]. However, the complex
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Fig. 1. The Effective Receptive Field (ERF) [21] comparison for (a) CNN-
based method NLSN [22], (b) Transformer-based model ATD [23], and the pro-
posed Mamba-based network FMSR. A wider distribution of dark areas demon-
strates larger ERF. Our FMSR effectively obtains the largest ERF, indicating
favorable global exploration capability.

imaging environment (e.g., scattering and tremor) often impedes
high-resolution (HR) image acquisition [9], [10], [11], [12].
Moreover, RSI often undergoes severe compression and down-
sampling to tame the transmission instability between satellites
and ground stations, resulting in suboptimal scene represen-
tation. Hence, reconstructing HR images from low-resolution
(LR) observations is crucial for improving both human percep-
tion and subsequent applications.

In contrast to upgrading hardware maintenance, super-
resolution (SR) techniques provide a flexible and cost-effective
alternative by predicting latent HR images from their LR coun-
terparts [12], [13], [14], [15]. Early efforts often relied on hand-
crafted priors to tame the ill-posedness [16], [17], [18], [19],
[20]. However, they struggled to produce accurate results and
involved laborious optimization processes. Recently, deep neu-
ral networks have demonstrated remarkable progress in SR tasks
and achieved superior performance over traditional approaches,
such as Convolutional Neural Networks (CNNs) and Transform-
ers. While CNN-based methods commonly invent elaborate at-
tention mechanisms to grasp the informative features, restrained
by the inherent nature of convolution units, they have limited
respective fields and cannot capture long-range dependencies.
As shown in Fig. 1, the effective receptive field (ERF) [21] of
CNN-based model NLSN [22] is limited. This requirement is es-
sential for SR tasks, as a predicted pixel needs prior knowledge
from its surrounding region to be super-resolved, especially in
wide-range RSI.

Transformer-based methods achieve increased respective
fields by leveraging global interaction among all input data
through a self-attention (SA) mechanism, demonstrating
impressive performance across various domains [24], [25], [26],
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[27], [28], [29]. Despite achieving superior performance against
CNN-based approaches, these methods exhibit quadratic com-
plexity with respect to the token size. In this context, taming
Transformer for high-resolution scenarios presents a significant
challenge, particularly for large-scale remote sensing images.
Although some approaches seek a lightweight SA for global
modeling, such as recursive SA [30] and window-based SA [31],
they usually come at the expense of global modeling accuracy
and require stacking many blocks to establish a global depen-
dency, thus increasing the computational budget. Moreover, the
inherent issue of quadratic complexity remains unsolved. There-
fore, a natural question arises: can a more efficient yet effective
solution be developed to grasp the long-range dependencies
across large-scale RSI?

The recent-popular State Space Model (SSM) could be a
promising answer to this question. Originating from Kalman
filtering [32], SSM primarily employs linear filtering and predic-
tion methods to represent the evolution of the internal state of the
system, thus naturally enjoying linear complexity. By integrating
SSM with the MultiLayer Perceptron (MLP) block of Trans-
former, the simplified architecture Mamba [33] is achieved,
which introduces a selection scanning mechanism in SSM to
filter out irrelevant information for long-sequence modeling.
Recently, Mamba demonstrated impressive results in various
domains, making it a possible replacement for the Transformer
model. Nevertheless, although Mamba exhibits favorable perfor-
mance and can serve as an alternative to Transformer, some po-
tential problems persist in large-scale earth observation scenar-
ios, making introducing Mamba into RSI SR more challenging.
Firstly, images captured by satellite platforms often lose cru-
cial frequency information for perception, which requires
heterogeneous representation for accurate reconstruction.
The underlying reason lies in that the original Mamba processes
each token equally in the spatial domain, limiting its ability
to perceive informative frequency signals across entire images.
Secondly, there exists spatial diversity among observed ob-
jects in RSI, which is barely explored. While Mamba is ef-
fective in exploring long-range dependencies, it lacks explicit
consideration of spatially-varying contents, resulting in subop-
timal pixel-wise representation during local modeling.

To mitigate the aforementioned problem, we first attempt to
extend Mamba from the perspective of frequency analysis and
propose a frequency-assisted Mamba for RSI SR, termed FMSR.
Specifically, instead of solely employing VSSM for long-range
modeling, we devise an effective Frequency Selection Module
(FSM) to adaptively identify informative frequency cues vital
for perception. By incorporating FSM with Mamba, the result-
ing frequency-assisted mamba block can better utilize the com-
plementary strengths between Mamba and frequency analysis
for accurate SR. Considering that the VSSM aggregates image
features via patch-wise linear scaling, it inevitably overlooks
some pixel-wise localities. To address this, we further develop
a Hybrid Gate Module (HGM) to better introduce a local induc-
tive bias. Unlike the commonly used channel attention, HGM
allows for selective amplification or attenuation of local features
on spatial position, effectively enhancing spatially-varying rep-
resentation during channel-wise correction learning.

Furthermore, there is inherent misalignment between dif-
ferent level features (global and local). The direct fusion of
multi-level features inevitably arises in confused and conflicted
representation. To this end, we introduce a learnable adapter
to rescale cross-level representation for improved integration.
Overall, equipped with the above designs, our FMSR can cap-
ture both global and local dual-domain dependencies for RSI
SR while maintaining moderate complexity.

Our main contribution can be summarized as follows:
1) We introduce the first state space model for remote sensing

image super-resolution (FMSR), highlighting Mamba’s
capability for efficient and effective global modeling in
large-scale remote sensing scenarios.

2) To integrate more high-frequency cues into Mamba, we
develop a Frequency Selection Module (FSM), which
adaptively identifies and selects the most informative fre-
quency signals during the fast fourier transformation pro-
cess.

3) We design a Hybrid Gate Module (HGM) that inte-
grates the local bias of CNN operators with spatially-
varying coordinates to enhance the locality of feature rep-
resentation, leading to more accurate and faithful SR
performance.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related knowledge pertinent to our FMSR. In
Section III, we provide detailed descriptions of the implemen-
tation of our FMSR. Section IV contains extensive experiments
conducted on widely used remote sensing benchmarks. Sec-
tion V concludes our work.

II. RELATED WORK

In this section, we first present a comprehensive review of
remote sensing image super-resolution. Then, we introduce rel-
evant background knowledge for this study, including state space
models and frequency learning.

A. Remote Sensing Image Super-Resolution

RSI SR has witnessed significant advancements with the
booming of deep learning [34], [35], [36], [37], [38]. The pri-
mary focus of this task lies in extracting prior knowledge from
LR images, which can be broadly categorized into three cate-
gories: CNN-, Transformer-, and Mamba-based methods.

CNN-based: Drawing inspiration from SRCNN [39], early
efforts usually elaborate CNNs with advanced modules, such
as residual [40] and dense structure [41] and attention mech-
anisms [42], [43]. Mei et al. [22] introduced non-local sparse
attention to capture global dependencies inherent in LR images.
Similarly, Lei et al. [44] extended the non-local mechanism by
exploring cross-scale similarity in RSI. While these methods
improve the local receptive field nature of CNNs, they suffer
from significant computational overhead during non-local ex-
ploration, making them less efficient in large-scale remote sens-
ing scenes. Moreover, limited by the local bias of CNN, they can-
not capture critical long-range dependencies and reach a plateau
in performance.
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Transformer-based: The core insight of Transformer lies in
the Self-Attention (SA) mechanism [45], which has demon-
strated superior long-range modeling capability and outper-
formed CNN-based methods. Lei et al. [46] devised a multi-
stage Transformer-enhanced network. Recently, Chen et al. [31]
proposed to activate more pixels in SR tasks by combining
both CNN and self-attention. More Recently, an improved net-
work [47] was proposed by integrating channel attention, im-
proved SA, and anchored stripe attention. However, due to the
quadratic complexity of SA regarding token size, they are less
efficient in handling high-resolution images, large-scale RSI in
particular. To alleviate the computational budget of SA, Chen
et al. [30] proposed a recursive SA by recursively aggregating
input features for enriched token representation. Nevertheless,
efficient SA often sacrifices global modeling capability, and de-
spite efforts to mitigate the quadratic complexity, the inherent
problem of SA remains unsolved.

Mamba-based: In light of the success of Mamba, some schol-
ars [48] attempt to introduce Mamba for efficient global model-
ing with linear complexity. However, to the best of our knowl-
edge, the potential of Mamba in RSI SR remains unexplored.
Since the imaging is wide-ranging, the content in RSI exhibits
complex and diverse properties. Furthermore, compared to nat-
ural images, the texture information of RSI is less prominent,
and the vital high-frequency information tends to vanish in deep
models.

In summary, there is an urgent need for an efficient yet effec-
tive scheme to model the heterogeneous representation and to
seek a practical solution to explore the critical high-frequency
components. This paper pioneers exploring Mamba’s potential
in the RSI SR task and extends Mamba with frequency analysis,
providing an effective and efficient paradigm for this challenging
issue.

B. State Space Model

Recently, state space models (SSMs) [49] have emerged as
a promising approach, demonstrating competitive performance
in long-range modeling compared to transformers. The key
advantage of SSMs lies in their linear scaling with sequence
length, providing a global perspective with linear complex-
ity. Gu et al. [50] pioneered the SSM to tackle long-sequence
data modeling, illustrating promising linear scaling properties.
Subsequently, they put forward a variant named Mamba [51],
which adopts a selective mechanism and efficient network de-
sign. Mamba has shown superior performance to transformers
in natural language processing tasks. In light of the success of
Mamba, it has been introduced in computer vision tasks and
demonstrated impressive performance, including object detec-
tion [52], image classification [53], and biomedical image seg-
mentation [54]. However, research on Mamba in low-level vision
tasks is still in its primary stage, and efforts for RSI SR remain
unexplored.

This paper adapts Mamba for the SR task. Unlike previous
works that solely replace self-attention with the Vision State
Space Model (VSSM) for long-range modeling, we promote the
perspective of global exploration in the spatial-frequency dual

domain. Compared to spatial-wise modeling, our method is more
effective by incorporating latent high-frequency cues for better
global representation.

C. Fourier Transform

The Fast Fourier transform (FFT) can be viewed as a global
statistical signal, making it suitable for global information anal-
ysis. In light of this, various visual tasks leverage FFT for fre-
quency domain modeling, such as semantic segmentation [55]
and image classification [56]. In low-level vision scenes, Mao
et al. [57] introduced a residual FFT module capable of cap-
turing comprehensive local high-frequency details for low-light
enhancement. Li et al. [58] integrated the Fourier transform into a
deep network to mitigate noise amplification during luminance
enhancement. Guo et al. [59] proposed a window-based fre-
quency channel attention mechanism. Wang et al. [60] conducted
mutual learning of frequency and spatial domains to improve
face image SR. Further, some approaches incorporate FFT into
the loss function to enhance reconstructed sharp details [61].

However, these methods often prioritize elaborate networks
for exploring frequency signals, neglecting frequency contribu-
tion analysis. This inevitably amplifies harmful frequencies and
increases computational overhead. In this study, we dynamically
adjust input frequency-domain features using lightweight acti-
vation weights and a convolutional layer to emphasize informa-
tive frequencies for accurate SR, which offers more flexibility
to modulate selection thresholds.

III. METHODOLOGY

In this section, we introduce the implementation details of
our FMSR. The FMSR comprises a straightforward backbone
with convolution layers, Frequency-assisted Mamba Groups
(FMG), and a pixel-shuffle layer. We start with an overview of
FMSR, and then we dive into its components by explaining: the
Frequency-assisted Mamba Block (FMB), Vision State Space
Module (VSSM), Hybrid Gate Module (HGM), and Frequency
Selection Module (FSM).

A. Overview of FMSR

As illustrated in Fig. 2, the proposed FMSR consists of three
major stages: shallow feature extraction of LR, deep feature ac-
quisition, and reconstruction of HR. Firstly, the given LR input
ILR is fed into a 3× 3 convolution layer φ with learnable pa-
rameters θ to generate initial feature F0, which can be written
as:

F0 = φ(ILR, θ). (1)

Subsequently, the F0 undergoes deep feature extraction with
multiple Frequency-assisted Mamba Groups (FMGs), followed
by a 3× 3 convolution for feature refinement. This process can
be expressed as:

Fm = FMGm(FMGm−1(· · ·FMG1(F0))), (2)

where m represents the number of FMG and Fm is the out-
put of m-th FMG. We incorporate a global skip connection
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Fig. 2. Overview of the proposed FMSR. The Frequency-assisted Mamba Blocks (FMB) are arranged sequentially in Frequency-assisted Mamba Groups (FMG).
In FMB, a Frequency Selection Module (FSM) is adopted to assist the learning process of the Vision State Space Module (VSSM) and Hybrid Gate Module (HGM).
αl is a learnable adaptor for hybrid adaptive integration in the l-th FMB.

to prepare high-quality features Frec for reconstruction, i.e.,
Frec = Conv(Fm) + F0. Finally, a 3× 3 convolution, a pixel-
shuffle layer PS, and a terminal convolution are employed to
upscale and restore the super-resolved output ISR:

ISR = Conv(PS(Conv(Frec), s)), (3)

where s means the upscale factor.

B. Frequency-Assisted Mamba Block

The structure of FMB is shown in Fig. 2, from which we
can find that FMB serves as a primary component in FMG. In
particular, each FMG contains cascaded FMB, a convolution
layer, and a residual connection. The FMB is responsible for
exploring global and local representations in a frequency-spatial
dual domain. The function of i-th FMG can be summarized as
follows:

Fi = Conv(Ψn(Ψn−1(· · ·Ψ(Fi−1)))) + Fi−1, (4)

where Ψn denotes the n-th FMB in each FMG.
Specifically, FMB performs global and local modeling in the

frequency-spatial dual domain. Given output of Ψl−1, termed
xl−1, the l-th FMB Ψl processes xl−1 with three parallel
branches to grasp their merits of global representations: 1) A
Layer Norm (LN) followed by the 2D Vision State Space Module
(VSSM) is developed to capture the spatial-wise long-term in-
formation, 2) a Frequency Selection Module (FSM) is equipped
to introduce more high-frequency cues in the frequency domain
while promoting the capability of VSSM, 3) a learnable scaling
factor αl for dynamic feature aggregation. The feature y after
global frequency-spatial exploration can be formulated as:

y = αl · xl−1 +VSSM(LN(xl−1)) + FSM(xl−1). (5)

After that, y undergoes further local modeling. Similarly, we
adopt LN to normalize y and then use a Hybrid Gate Module
(HGM) to grasp the spatial locality. Also, FSM is employed
to assist the local modeling process with frequency learning.

Finally, another scale factor αl+1 is used to adaptively integrate
the output from local and global representations, which can be
expressed as:

xl = αl+1 · y +HGM(LN(y)) + FSM(y). (6)

C. Vision State Space Module

Previous efforts often rely on Transformers to explore global
dependency, which calculate the long-range response with the
self-attention mechanism. Despite achieving favorable perfor-
mance, they suffer from high complexity, hindering the efficient
modeling in large-scale remote sensing images. Inspired by the
success of the vision state space module in long-term model-
ing and aggregation with linear complexity, we first introduce
VSSM to the RSI SR task.

In particular, as illustrated in Fig. 2, the normalized fea-
ture xN = LN(xl) is expanded along the channel dimension
by a linear projection operation φ1 with an expansion factor
λ. Then, a series of operations including a 1× 1 Depth-Wise
Convolution (DWConv) f1×1, a SiLU activation σ1, as well as
the 2D-selective scan module (SSM) and LN are sequentially
stacked to generate the output of the first branch, denoted h1.
This branch can be defined as:

h1 = LN(SSM(σ1(f1×1(φ1(xN , λ))))). (7)

In the second branch, another linear layer φ2 and SiLU function
σ2 are used. The output of this branch can be obtained by:

h2 = σ2(φ2(xN , λ)). (8)

Finally, to produce the final output hout, the output h1 and h2 are
incorporated via Hadamard product, followed by a linear layer
φ3. That is:

hout = φ3(h1 ⊗ h2). (9)
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Fig. 3. The proposed Hybrid Gate Module (HGM) conceptual illustration.
The input feature X is split in the channel dimension and fed through a Channel
Attention Block (CAB) and a pixel-wise linear projection layer, respectively.
After a Hadamard product operation, a 1× 1 convolution generates the output
tensor Y.

D. Hybrid Gate Module

Current methods often utilize either MLP layers [31] for fea-
ture propagation or incorporate convolution operations, such
as attention mechanisms [48], after long-range exploration to
introduce critical locality for improved performance. Our ap-
proach draws inspiration from these methods but condenses
them into a unified hybrid module. To learn a comprehen-
sive local context, the Hybrid Gate Module (HGM) incorpo-
rates the spatially-varying properties of remote sensing im-
ages (RSI) by selectively amplifying or attenuating local fea-
tures in the pixel domain while preserving channel-specific
features.

As shown in Fig. 3, HGM treats features captured by lo-
cal convolution as coordinates and then multiplies them with
a pixel-wise gating mask of the same size. Specifically, the in-
put feature X is first processed through a 1× 1 convolution to
expand the channel dimension to 2c. We then split X into two
parts, X1 and X2, by halving the channel dimension. X1 and X2

are subsequently sent into the first and second branches, respec-
tively. In the first branch, a 1× 1 convolution, a 3× 3 depth-wise
convolution, and a channel attention block [42] are used to yield
the coordinates.

Xcoor = CA(Dconv(Conv(X1))). (10)

In the second branch, we fed the feature through pixel-wise linear
projection, somewhat similar to the MLP layer. In contrast to
the MLP layer, we only activate the feature at the end of linear
projection with the GELU activation function to generate the
gate weights:

M = GELU(Linear(X2)). (11)

Finally, the output Y can be obtained by:

Y = Conv(M�Xcoor). (12)

E. Frequency Selection Module

To achieve frequency-spatial dual domain representation at
global and local levels, we equip VSSM and HGM with fre-
quency exploration. As illustrated in Fig. 4, we devise three

Fig. 4. Three variants of Frequency Selection Module (FSM). Here, we adopt
2D Fast Fourier Transformation (FFT) for frequency learning.

variants of frequency selection operations using Fast Fourier
transformation (FFT):

a) Using 2D real FFT and using a 1× 1 convolution layer
before inverse FFT, which means we do not perform fre-
quency selection:

Z = F−1(Conv(F(x))). (13)

b) Inserting ReLU activation between FFT and Inverse FFT
to dynamically select the frequency pattern:

Z = F−1(ReLU(F(x))). (14)

c) Applying two stacks of 1× 1 convolution layer and GELU
activation function:

Z = F−1Conv((GELU(Conv(F(x))))). (15)

We finally choose scheme (c) as our FSM as 1× 1 convolu-
tion lets the network modulate flexible thresholds for frequency
selection with lightweight design. Ablation experiments demon-
strate the effectiveness of (c) compared to (a) frequency analysis
without selection and (b) ReLU-based selection.

IV. EXPERIMENT

A. Datasets

In this paper, we report the results of the SR performance
on three RSI benchmarks, including AID [62], DOTA [63], and
DIOR [65]. In particular, AID is used to form the training and
test simultaneously. We randomly select 3000 and 900 images
from AID to form the training and test set, with an image size
of 640× 640. Note that the training and test parts of AID are
non-overlapping. In DOTA and DIOR, 900 and 1000 images are
randomly extracted for model evaluation, respectively. Both of
them are with a size of 512× 512.

B. Implementation Details

Model Details: This paper focuses on ×4 SR. Our FMSR is
constructed by 6 FMGs for deep feature exploration, with each
FMG consisting of 6 FMBs, i.e., m = n = 6. Empirically, we
set the internal channel dimension to c = 96. ll convolutional
kernel sizes are set to 3× 3, except for those in the Hybrid Gate
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TABLE I
ABLATION STUDIES OF DIFFERENT COMPONENTS ON THE PROPOSED FMSR

Module (HGM) and Frequency Selection Module (FSM), which
utilize 1× 1 kernels for increased efficiency. The expansion rate
in the linear projection layer is set to λ = 2.

Training Details: During the training procedure, all the SR
methods were retrained on the AID training set using L1 loss
and ADAM algorithm with β1 = 0.9 and β2 = 0.999. To train
our FMSR, we randomly select 4 image patches with the size
of 64× 64 in each mini-batch. The learning rate is initialized
to 1× 10−4 and halved every 200 epochs until training stops at
500 epochs. All SR models were implemented in the PyTorch
framework and trained on a single NVIDIA RTX 3090 GPU
with 24 GB memory and a 3.40 GHz AMD Ryzen 5700X CPU.

C. Evaluation Metrics

Two classical full-reference indicators are used to evaluate the
SR performance, i.e., Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) [68]. Moreover, the LPIPS
metric [69] is employed to analyze the perceptual quality of
super-resolved results. Note that PSNR and SSIM are calculated
on the luminance channel (Y) of YCbCr space.

D. Ablation Study

In this section, we discuss the proposed FMSR in depth by
investigating the effect of its major components and their vari-
ants. All these models are trained on AID with scale factor ×4.
Following prior work [70], we employ a small-scale dataset,
AID-tiny, consisting of 30 randomly selected images from AID,
for efficient evaluation unless otherwise specified. The baseline
model is derived by excluding FSM and substituting VVSM
and HGM with the standard window-based self-attention and 5
residual blocks, respectively.

1) Effect of Key Modules: (a) Effect of VSSM: Table I reports
that the Model-1 (baseline) obtains 27.751 dB. Model-2 exhibits
a performance gain of 0.089 dB over the baseline model, which
demonstrates the effectiveness of VSSM in global modeling.
To demonstrate the linear complexity of VSSM, we conducted
complexity experiments with inputs of different resolutions, as
shown in Fig. 8. Specifically, we adopted the standard Multi-
head Self-Attention (MSA) [71] with a dimension of 180 as the
baseline and adjusted our model to have a dimension of 144.
This adjustment ensured that the complexity in terms of pa-
rameters (0.1308 M vs. 0.1279 M) and FLOPs (0.1534 G vs.
0.1312 G) was roughly equivalent. Our method is more efficient

Fig. 5. Feature visualization comparisons. The feature maps corresponding to
each reference image are the results of the 56-th channels in the final FMG.

Fig. 6. Visualization of the feature maps. The proposed Frequency Selection
Module (FSM) yields sharp and clear details for reconstruction.

than the widely used MSA and exhibits linear complexity with
input resolution. In addition, in Fig. 5, we visualize the interme-
diate feature maps of the baseline model and our FMSR. The
features are obtained by visualizing the 56th channels at the end
of FMG. With VSSM, the results of our FMSR are more promi-
nent across the entire feature maps, highlighting the favorable
global modeling capability.

(b) Effect of HGM: Employing both VSSM and the MLP layer,
Model-3 demonstrates a favorable performance improvement of
0.258 dB. However, when equipped with the channel attention
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Fig. 7. Ablation studies on the effect of different expansion factors λ.

Fig. 8. Computational complexity comparison with inputs of different res-
olutions. We adopt the standard Multihead Self-Attention [1] as the baseline.
Initially, we adjust the model to ensure that the consumption of parameters and
FLOPs is roughly equivalent. Subsequently, we increase the input resolution
from 32× 32 to 88× 88.

TABLE II
ABLATION STUDIES ON DIFFERENT VARIANTS OF FREQUENCY SELECTION

MODULE (FSM) AS ILLUSTRATED IN FIG. 4

mechanism to introduce more locality, Model-4 performs simi-
larly to Model-2 (28.088 dB vs. 28.104 dB). This suggests that
neither MLP nor channel attention is less effective in boosting
the performance of Mamba. In this context, further improving
the reconstruction performance becomes very challenging. Our
HGM achieves a performance gain of 0.034 dB. Thus, to benefit
from both global and local inductive bias, we combine VSSM
and HGM in our FMSR. In addition, we have investigated the
impact of different expansion factors λ used in the linear pro-
jection layer. The quantitative results are presented in Fig. 7. It
is observed that the performance of FMSR does not fluctuate
significantly with changes in λ. We ultimately selected λ = 2 as
it delivers the best performance.

(c) Effect of FSM: By comparing the results of FMSR and
Model-5, we can evaluate the performance of the proposed FSM.
In this case, our FSM can bring an improvement of 0.056 dB. As
reported in Table II, we discuss some variants of FSM shown in

TABLE III
ABLATION STUDIES ON HYBRID ADAPTIVE INTEGRATION (HAI) OF GLOBAL

AND LOCAL REPRESENTATIONS

TABLE IV
ABLATION STUDIES FOR THE NUMBER OF FMB

Fig. 4. If we do not perform frequency selection, FSM(a) pro-
duces the worst PSNR performance. By inserting a simple ReLU
activation, FSM(b) could adaptively eliminate noisy frequencies
and achieve a gain of 0.018 dB, demonstrating the effectiveness
of the selection mechanism. If we adopt 1× 1 convolution and
GELU for selection, FMSR allows for a more flexible threshold
for frequency selection, thus obtaining the best performance.
Moreover, visual comparisons between FMSR and Model-5 are
shown in Fig. 6. In Fig. 6, our FMSR generates superior textures
in the high-frequency of the bridge. In contrast, without perform-
ing frequency selection, the intermediate features are blurred at
the boundary and unclear at the edge. These results confirm that
our FSM has the ability to explore more critical high-frequency
cues for better SR performance.

2) Effect of HAI: We show the influence of HAI in Table III,
where we conduct three ablation analyses: 1) without HAI, 2)
with residual connection (Skip), and with HAI. We observe that
without HAI, the performance of FMSR drops by 0.13 dB. Ad-
ditionally, comparing the model with Skip, our FMSR achieves a
significant improvement of 0.36 dB. This may be because of the
misalignment between global and local representations, which
means simply adding them may not elaborate enough to integrate
these different levels of knowledge, thus generating suboptimal
performance. Benefiting from the adaptive scaling factor α, our
FMSR could dynamically adjust the features at the global and
local ranges, thus generating enriched feature integration.

3) Model Efficiency: The parameters, FLOPs, and SR per-
formance of state-of-the-art (SOTA) methods are reported in
Table VII. Intuitively, we plot the performance versus parame-
ters in Fig. 9(c), where we observe that FMSR strikes a favor-
able trade-off between performance and parameters. Here, we
further investigate the relationship between network structure
and model complexity. Moreover, more intuitive metrics are in-
volved to analyze the model efficiency, such as inference times
and memory consumption.
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Fig. 9. Ablation studies of memory consumption, inference times, parameters, and PSNR performance on DOTA [63]. Note that the inference times are calculated
on 100 images.

Fig. 10. The visualization of Local Attribution Maps (LAM) [67]. A wider range of LAM illustrates more pixels are involved in reconstruction. A higher diffusion
index demonstrates better global activation capability.

TABLE V
ABLATION STUDIES FOR THE NUMBER OF FMG

(a) Number of FMB and FMG: We study the inference of the
number of FMB and FMG in Tables IV and V, respectively. As
we can see in Table IV, using more FMB leads to the consis-
tently increasing PSNR performance from 27.744 to 28.181 dB,
demonstrating the effectiveness of FMB. Meanwhile, the

parameters grow dramatically from 4.55 to 15.37 M. To strike
a favorable balance between performance and model size, we
finally picked 6 FMB in our FMSR. Regarding the number of
FMG, as shown in Table V, the increasing number of groups
leads to higher PSNR values. Nevertheless, the performance
saturates at group 8, which may be caused by over-fitting. Ul-
timately, we insert 6 FMG in the FMSR for deep feature
learning.

(b) Memory Consumption: The max CUDA memory con-
sumption of our FMSR and SOTA models are shown in Fig. 9(a),
from which we can see that our consumes the least memory
consumption while outperforming other methods. Specifically,
compared to competitive NLSN that adopts non-local atten-
tion for global modeling, we find the performance of FMSR
is 0.18 dB higher, but also reduces the memory by 160 MB.
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Fig. 11. Visual comparisons of our FMSR with CNN-, Transformer-, and Mamba-based methods on AID [62] with scale ×4. Zoom in for better observation.

TABLE VI
MODEL EFFICIENT COMPARISON

TABLE VII
QUANTITATIVE COMPARISON ON AID [62], DOTA [63], AND DIOR [65] TEST SET IN TERMS OF PSNR, SSIM, AND LPIPS
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TABLE VIII
QUANTITATIVE COMPARISON WITH SOTA CNN-, TRANSFORMER-, AND MAMBA-BASED SR METHODS ACROSS 30 SCENE CATEGORIES ON AID [62]

Furthermore, FMSR achieves better performance against im-
pressive HAT-L with only 28% of its memory. This indicates
that FMSR has stronger global modeling capability and greatly
surpasses Transformer-based models in model efficiency.

(c) Inference Times: Regarding the inference times, as shown
in Fig. 9(b), our FMSR shows a trade-off with other methods. For
instance, FMSR achieves the best PSNR performance compared
to the advanced Transformer-based model RGT by 0.12 dB, but
at the cost of increased inference time usage of about 90.6 ms,
measured by the test times of 100 images. These results provide
intuitive evidence that our FMSR is very efficient in large-scale
remote sensing image SR tasks.

E. Comparisons With State-of-the-Art

1) Comparative Methods: To evaluate the SR performance
of our FMSR against SOTA methods on remote sensing images,
advanced CNN-, Transformer-, and Mamba-based models are
involved for comprehensive comparison, including EDSR [64],
RDN [41], RCAN [42], HAN [43], NLSN [22], HSENet [44],
TransENet [46], HAT-L [31], GRL-L [47], RGT [30], and Mam-
baIR [48]. We also report the self-ensemble results of our FMSR,
dubbed FMSR++.

2) Quantitative Evaluations: The quantitative results on the
AID, DOTA, and DIOR datasets are shown in Table VII. Our
FMSR++ and FMSR achieve the highest and second-highest
average performance on all metrics, demonstrating their supe-
rior SR performance across various remote sensing benchmarks.
Particularly on the AID dataset, FMSR generates a substantial
gain of 0.12 dB PSNR over HAT-L with only 29% parameters

and 19% FLOPs. Compared to GRL-L, FMSR obtains 0.18 dB
higher PSNR on the DOTA dataset with 60% lower complex-
ity. Our FMSR exhibits 0.3001 LPIPS on AID, which is much
higher than other comparative approaches. Moreover, recent
Mamba-based methods, like MambaIR, achieved marginal im-
provements against CNN-based models. For instance, compared
to NLSN, which explores global dependency with non-local at-
tention, MambaIR only leads NLSN by 0.04 dB on AID. This
underscores the effectiveness of VSSM in exploring non-local
dependency. However, it also indicates that spatial-wise global
modeling reaches a plateau in complex remote sensing images.
In contrast to simply employing VSSM for global modeling, our
FMSR seeks a more practical solution in the frequency domain,
thus achieving significant improvement over MambaIR.

In addition, to validate the generalization capability of SR
models on diverse remote sensing senses, we further report the
PSNR and SSIM results on AID across 30 scene categories. The
results are shown in Table VIII. As we can see, FMSR demon-
strates stronger generalization capability against SOTA methods
and obtains the best performance on almost all remote sensing
scenarios, receiving 0.18 dB PSNR and 0.039 SSIM over Mam-
baIR on the “Industrial” scene. Furthermore, in the “Stadium”
category, our FMSR significantly outperforms HAT-L by a large
margin. These notable improvements obtained by FMSR align
with our motivation, which aims to introduce Mamba for effi-
cient yet favorable global modeling in large-scale remote sensing
images.

3) Qualitative Results: Visual comparisons on AID, DOTA,
and DIOR with a scale factor of ×4 are shown in Figs. 11, 12,
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Fig. 12. Visual comparisons of our FMSR with CNN-, Transformer-, and Mamba-based methods on DOTA [63] with scale ×4. Zoom in for better observation.

Fig. 13. Visual comparisons of our FMSR with CNN-, Transformer-, and Mamba-based methods on DIOR [65] with scale ×4. Zoom in for better observation.

and 13. From these visualizations, we observe that our FMSR
recovers sharp edges with richer textures, especially captur-
ing critical high-frequency details in these remote sensing im-
ages. For example, comparing the restored “playground_270”
in Fig. 11, we can see that the recent competitive Transformer-
based method HAT-L and Mamba-based model MambaIR strug-
gle to reconstruct the HR lines on the runway. Moreover, as illus-
trated in “img_165” and “img_658” of Fig. 12, only the proposed

FMSR can recover severely damaged lines on the ground, while
other SR models fail to produce accurate distribution on the
details. These visual comparisons further demonstrate the effec-
tiveness of our FMSR in capturing and reconstructing fine details
in RSI.

When comparing the visual results of the top image from
the DIOR dataset in Fig. 13, where large-scale and global in-
formation exists, we observe that all CNN-, Transformer-, and
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Mamba-based SR networks struggle to handle this issue, re-
sulting in suboptimal results and losing some high-frequency
textures. In contrast, benefiting from the global modeling ca-
pability of VSSM as well as the spatial-frequency dual-domain
exploration, our FMSR produces results that are visually close
to the ground truth and successfully generate multi-frequency
lines. For example, MambaIR without frequency selection can-
not recover accurate details, while HAT-L produces severe dis-
tortion. Our FMSR still maintains favorable visual quality with
more high-frequency contextual information. Similarly, the vi-
sual comparisons in the bottom image of Fig. 13 provide addi-
tional evidence of the superiority of our FMSR.

In addition, the LAM comparisons shown in Fig. 10 demon-
strate that FMSR can exploit more pixels during the SR pro-
cess thanks to the favorable long-range modeling capability of
VSSM. By comparing FMSR with HAT-L, FMSR surpasses
HAT-L by 8.637 in terms of the diffusion index, indicating
the strong wide-range pixel utilization capability due to our
spatial-frequency dual-domain representation.

V. CONCLUSION

In this study, we first introduce the state space model for re-
mote sensing image super-resolution. FMSR effectively mod-
els global dependencies in large-scale remote sensing images
while enjoying the linear complexity. Specifically, we develop
an efficient yet effective frequency selection module (FSM) to
incorporate more relevant frequencies during spatial-frequency
dual-domain learning. Meanwhile, channel-wise attention met-
rics are linearly scaled to enrich the spatially varying repre-
sentation. Furthermore, to combine global and local representa-
tions, we employ a learnable adaptor to adaptively adjust features
across different levels. Extensive quantitative and qualitative ex-
periments across AID, DOTA, and DIOR benchmarks demon-
strate the superior performance of our FMSR in remote sensing
image super-resolution tasks compared to state-of-the-art CNN-,
Transformer-, and Mamba-based SR models.

As prior research demonstrated that achieving optimal per-
formance on the ×4 SR task typically translates to favorable
performance on lower scaling factors, this study focused solely
on the×4 SR. While saving computational resources, this speci-
ficity lacks flexibility in exploring SR at different scales. In fu-
ture work, we plan to extend our FMSR to include more scaling
factors, further demonstrating its robustness and effectiveness.
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