Qiang Zhang (张 强) |
招收2025级硕士研究生3名,及指导大学生创新训练计划1~2项,欢迎计算机科学与技术、数学、软件工程、人工智能、大数据、智能科学与技术、遥感、地信等专业的同学报名联系!有意愿者请把简历发至本人邮箱,期待你我能共同成长!
专刊征稿:Remote Sensing (IF=4.2,中科院二区),Special Issue: Trends and Prospects in Hyperspectral Remote Sensing Images Processing and Analysis,截止时间:2025年2月26日,敬请各位老师和专家赐稿!
Work Experience:
Education Experience:
Journals: (* denotes the Corresponding Author)
[29] Q. Zhang, J. Zhu, Y. Dong, E. Zhao, M. Song, and Q. Yuan, “10-minute forest early wildfire detection: Fusing multi-type and multi-source information via recursive transformer,” Neurocomputing, vol. 616, 128963, 2025. (SCI Q1, IF=) [Link] [PDF] [BibTeX]
[28] Q. Zhang, Y. Zheng, Q. Yuan, M. Song, H. Yu, and Y. Xiao, “Hyperspectral image denoising: From model-driven, data-driven, to model-data-driven,” IEEE Transactions on Neural Networks and Learning Systems (TNNLS), vol. 35, no. 10, pp. 13143-13163, 2024. (SCI Q1 Top, IF=, ESI Highly Cited Paper) [Link] [PDF] [Dataset] [BibTeX]
[27] Q. Zhang, Y. Dong, Y. Zheng, H. Yu, M. Song, L. Zhang, and Q. Yuan, “Three-dimension spatial-spectral attention transformer for hyperspectral image denoising,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol.62, pp. 1-13, 2024. (SCI Q1 Top, IF=) [Link] [PDF] [Code] [BibTeX]
[26] L. Li, Q. Zhang*, M. Song, and Chein-I Chang, “Feedback band group and variation low rank sparse model for hyperspectral image anomaly detection,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol.62, pp. 1-19, 2024. (SCI Q1 Top, IF=) [Link] [PDF] [BibTeX]
[25] C. Yu, M. Xu, Q. Zhang*, and X. Lu, “Dual intervention constrained mask-adversary framework for unsupervised domain adaptation of hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 21, pp. 1-5, 2024. (SCI Q2, IF=) [Link] [PDF] [Code] [BibTeX]
[24] C. Yu, H. Li, Y. Hu, Q. Zhang*, M. Song, and Y. Wang, “Frequency-temporal attention network for remote sensing imagery change detection,” IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 21, pp. 1-5, 2024. (SCI Q2, IF=) [Link] [PDF] [Code] [BibTeX]
[23] L. Li, M. Song, Q. Zhang*, and Y. Dong, “Hyperspectral denoising via global variation and local structure low-rank model,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 61, pp. 1-14, 2023. (SCI Q1 Top, IF=) [Link] [PDF] [BibTeX]
[22] Q. Zhang, J. Zhu, Y. Huang, Q. Yuan, and L. Zhang, “Beyond being wise after the event: Combining spatial, temporal and spectral information for Himawari-8 early-stage wildfire detection,” International Journal of Applied Earth Observation and Geoinformation (JAG), vol. 124, 103506, 2023. (SCI Q1 Top, IF=) [Link] [PDF] [BibTeX]
[21] Q. Zhang, Y. Dong, Q. Yuan, M. Song, and H. Yu, “Combined deep priors with low-rank tensor factorization for hyperspectral image restoration,” IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 20, pp. 1-5, 2023. (SCI Q2, IF=) [Link] [PDF] [Dataset] [BibTeX]
[20] Q. Zhang, Q. Yuan, M. Song, H. Yu, and L. Zhang, “Cooperated spectral low-rankness prior and deep spatial prior for HSI unsupervised denoising,” IEEE Transactions on Image Processing (TIP), vol. 31, pp. 6356-6368, 2022. (CCF-A, SCI Q1 Top, IF=) [News] [Link] [PDF] [Dataset] [BibTeX]
[19] Q. Zhang, Q. Yuan, T. Jin, M. Song, and F. Sun, “SGD-SM 2.0: an improved seamless global daily soil moisture long-term dataset from 2002 to 2022,” Earth System Science Data (ESSD), vol. 14, pp. 4473–4488, 2022. (SCI Q1 Top, IF=) [Link] [PDF] [Dataset] [Code] [BibTeX]
[18] Q. Zhang, Q. Yuan, J. Li, Y. Wang, F. Sun, and L. Zhang, “Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013-2019,” Earth System Science Data (ESSD), vol. 13, pp. 1385-1401, 2021. (SCI Q1 Top, IF=) [Link] [PDF] [Project] [Dataset] [Code] [BibTeX]
[17] Q. Zhang, Q. Yuan, Z. Li, F. Sun, and L. Zhang, “Combined deep prior with low-rank tensor SVD for thick cloud removal in multitemporal images,” ISPRS Journal of Photogrammetry and Remote Sensing (ISPRS P&RS), vol. 177, pp. 161-173, 2021. (SCI Q1 Top, IF=) [Link] [PDF] [Dataset] [BibTeX]
[16] Q. Zhang, Q. Yuan, J. Li, F. Sun, and L. Zhang, “Deep spatio-spectral Bayesian posterior for hyperspectral image non-i.i.d. noise removal,” ISPRS Journal of Photogrammetry and Remote Sensing (ISPRS P&RS), vol. 164, pp. 125-137, 2020. (SCI Q1 Top, IF=) [Link] [PDF] [Dataset] [BibTeX]
[15] Q. Zhang, Q. Yuan, J. Li, Z. Li, H. Shen, and L. Zhang, “Thick cloud and cloud shadow removal in multitemporal images using progressively spatio-temporal patch group deep learning,” ISPRS Journal of Photogrammetry and Remote Sensing (ISPRS P&RS), vol. 162, pp. 148-160, 2020. (SCI Q1 Top, IF=) [Link] [PDF] [Code] [Dataset] [BibTeX] [Citations: 100+]
[14] Q. Zhang, Q. Yuan, J. Li, X. Liu, H. Shen, and L. Zhang, “Hybrid noise removal in hyperspectral imagery with spatial-spectral gradient network,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 57, no. 10, pp. 7317-7329, 2019. (SCI Q1 Top, IF=) [Link] [PDF] [Dataset] [BibTeX] [Citations: 100+]
[13] Q. Zhang, Q. Yuan, C. Zeng, X. Li, and Y. Wei, “Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 56, no. 8, pp. 4274-4288, 2018. (SCI Q1 Top, IF=, ESI Highly Cited Paper) [Link] [PDF] [Code] [BibTeX] [Citations: 400+]
[12] Q. Zhang, Q. Yuan, J. Li, Z. Yang, and X. Ma, “Learning a dilated residual network for SAR image despeckling,” Remote Sensing (RS), vol. 10, no. 2, 196, 2018. (SCI Q2, IF=) [Link] [PDF] [BibTeX] [Citations: 200+]
[11] Q. Yuan, Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral image denoising employing a spatial-spectral deep residual convolutional neural network,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 57, no. 2, pp. 1205-1218, 2019. (SCI Q1 Top, IF=, ESI Highly Cited Paper) [Link] [PDF] [Code] [Dataset] [BibTeX] [Citations: 400+]
[10] L. Li, M. Song, Q. Zhang, Y. Dong, Y. Wang, and Q. Yuan, “Local extremum constrained total variation model for natural and hyperspectral image non-blind deblurring,” IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), vol. 61, pp. 1-16, 2024. (SCI Q1 Top, IF=) [Link] [PDF] [BibTeX]
[09] Y. Xiao, Q. Yuan, K. Jiang, Y. Chen, Q. Zhang, and CW. Lin, “frequency-assisted mamba for remote sensing image super-resolution,” IEEE Transactions on Multimedia (TMM), vol. 26, pp. 1-13, 2024. (SCI Q1 Top, IF=) [Link] [PDF] [Code] [BibTeX]
[08] C. Yu, Y. Zhu, M. Song, Y. Wang, and Q. Zhang, “Unseen feature extraction: Spatial mapping expansion with spectral compression network for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 62, pp. 1-14, 2024. (SCI Q1 Top, IF=) [Link] [PDF] [BibTeX]
[07] W. Zhang, Z. li, G. Li, P. Zhuang, G. Hou, Q. Zhang, and C. Li, “GACNet: Generate adversarial-driven cross-aware network for hyperspectral wheat variety identification,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 62, pp. 1-15, 2024. (SCI Q1 Top, IF=, ESI Hot Paper, ESI Highly Cited Paper) [Link] [PDF] [BibTeX]
[06] E. Zhao, N. Qu, Y. Wang, C. Gao, S. Duan, J. Zeng, and Q. Zhang, “Thermal infrared hyperspectral band selection via graph neural network for land surface temperature retrieval,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 62, pp. 1-15, 2024. (SCI Q1 Top, IF=) [Link] [PDF] [BibTeX]
[05] Y. Xiao, Q. Yuan, Q. Zhang, and L. Zhang, “Deep blind super-resolution for satellite video,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 61, pp. 1-16, 2023. (SCI Q1 Top, IF=, ESI Highly Cited Paper) [Link] [PDF] [Code] [BibTeX]
[04] H. Yang, H. Yu, K. Zheng, J. Hu, T. Tao, and Q. Zhang, “Hyperspectral image classification based on interactive transformer and CNN with multilevel feature fusion network,” IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 20, pp. 1-5, 2023. (SCI Q2, IF=) [Link] [PDF] [BibTeX]
[03] Y. Xiao, Q. Yuan, J. He, Q. Zhang, J. Sun, X. Su, J. Wu and L. Zhang, “Space-time super-resolution for satellite video: A joint framework based on multi-scale spatial-temporal transformer,” International Journal of Applied Earth Observation and Geoinformation (JAG), vol. 108, 102731, 2022. (SCI Q1 Top, IF=, ESI Highly Cited Paper) [Link] [PDF] [Code] [BibTeX]
[02] W. Zhang, Z. Li, H. Sun, Q. Zhang, P. Zhuang, and C. Li, “SSTNet: Spatial, spectral, and texture aware attention network using hyperspectral image for corn variety identification,” IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 19, pp. 1-5, 2022. (SCI Q2, IF=) [Link] [PDF] [BibTeX]
[01] J. Lin, T. Huang, X. Zhao, Y. Chen, Q. Zhang, and Q. Yuan, “Robust thick cloud removal for multi-temporal remote sensing images using coupled tensor factorization,” IEEE Transactions on Geoscience and Remote Sensing (TGRS), vol. 60, pp. 1-16, 2022. (SCI Q1 Top, IF=) [Link] [PDF] [BibTeX]
Conferences:
[08] J. Zhu, Q. Zhang*, and Y. Zheng, “Forest early wildfire detection via multi-source and multi-type information fusion,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Athens, Greece, 2024. (EI, Poster)
[07] Q. Zhang, and J. Zhu, “Early wildfire detection based on temporal, spatial and spectral information fusion,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Pasadena, USA, 2023. (EI, Poster)
[06] Q. Zhang, F. Sun, Q. Yuan, and L. Zhang, “Thick cloud removal for Sentinel-2 time-series images via combining deep prior and low-rank tensor completion,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Brussels, Belgium, pp. 2675-2678, 2021. (EI, Oral) [Slides]
[05] Q. Zhang, F. Sun, Q. Yuan, J. Li, H. Shen, and L. Zhang, “Combined the data-driven with model-driven stragegy: A novel framework for mixed noise removal in hyperspectral image,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Hawaii, USA, pp. 2667-2670, 2020. (EI, Oral) [Slides]
[04] Q. Zhang, Q. Yuan, J. Li, H. Shen, and L. Zhang, “Cloud and shadow removal for Sentinel-2 by progressively spatiotemporal patch group learning,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Yakohama, Japan, pp. 775-778, 2019. (EI, Oral) [Slides]
[03] Q. Zhang, Q. Yuan, H. Shen, and L. Zhang, “A unified spatial-temporal-spectral learning framework for reconstructing missing data in remote sensing images,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Valencia, Spain, pp. 4981-4984, 2018. (EI, Poster) [Slides]
[02] Y. Zhu, C. Yu, M. Song, Y. Wang, E. Zhao, H. Yu, and Q. Zhang, “Center category focusing transformer network for hyperspectral image classification,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Athens, Greece, 2024. (EI, Poster)
[01] Y. Yang, Y. Wang, E. Zhao, M. Song, and Q. Zhang, “A SWIN transformer-based fusion approach for hyperspectral image super-resolution,” Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), in Pasadena, USA, 2023. (EI, Poster)
本科生课程:
Editorial Board:
Conference Organization:
Membership:
Journal Reviewer:
Codes:
Datasets: